Spelling suggestions: "subject:"[een] GENETIC PROGRAMMING"" "subject:"[enn] GENETIC PROGRAMMING""
131 |
Learning to recommend similar alternative products in e-Commerce catalogsAlmeida, Urique Hoffmann de Souza 15 June 2016 (has links)
Submitted by Adriely Bruce (adriely_bruce@hotmail.com) on 2016-12-16T14:58:13Z
No. of bitstreams: 1
Dissertação - Urique Hoffmann de Souza Almeida.pdf: 692636 bytes, checksum: c0255901a1a8d4253db69adb8d903141 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-22T14:11:38Z (GMT) No. of bitstreams: 1
Dissertação - Urique Hoffmann de Souza Almeida.pdf: 692636 bytes, checksum: c0255901a1a8d4253db69adb8d903141 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-22T14:14:43Z (GMT) No. of bitstreams: 1
Dissertação - Urique Hoffmann de Souza Almeida.pdf: 692636 bytes, checksum: c0255901a1a8d4253db69adb8d903141 (MD5) / Made available in DSpace on 2016-12-22T14:14:43Z (GMT). No. of bitstreams: 1
Dissertação - Urique Hoffmann de Souza Almeida.pdf: 692636 bytes, checksum: c0255901a1a8d4253db69adb8d903141 (MD5)
Previous issue date: 2016-06-15 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / In this work, we describe a novel method we designed, implemented and tested to finding products that are similar alternatives to a given product in the catalog of an e-commerce site. By similar alternatives, we mean products that, although are not identical to a product of interest, have features that make them suitable alternatives for customers that look for it. Our motivation is to enable the recommendation of alternativeproductsbasedsolelyontheproduct’sfeatures,withoutrelyingonhistorical purchase data. By doing so, we address the so-called cold start problem, which is often found in product recommendation approaches, and that may lead to profit loss in ecommerce sites. Our method, we call GPClerk, uses Genetic Programming (GP) to learn functions for comparing two products and telling whether two products are similar alternatives or not. These functions are termed here as product comparison functions. To make our method feasible in typical e-commerce settings, we also propose an unsupervised strategy to generate training examples to be used in the learning process. Results of experiments we carried out and report here indicate that our method is capable of generating suitable product comparison functions and that our strategy for automatically generating training data is effective for this task. / Nesse trabalho, descrevemos um novo método que projetamos, implementamos e testamos para a tarefa de encontrar produtos que são alternativas similares a um dado produto em um catálogo de um site de comércio eletrônico. Nesse trabalho, consideramos como alternativas similares produtos que, apesar de não serem idênticos a um produto de interesse, têm características que os tornam boas alternativas a esse produto. Nossa motivação para esse trabalho é poder recomendar produtos similares com base apenas nas suas características, sem a necessidade da utilização do histórico de compras dos usuários. Assim, nesse trabalho lidamos com o chamado problema de cold start, que é comumente encontrado em abordagens de recomendação, e que pode levar a perda de lucro em sites de comércio eletrônico. Nosso método, chamado GPClerk, utiliza Programação Genética (GP) para aprender funções que comparam dois produtos, e dizem se estes são similares ou não. Essas funções são chamadas nesse trabalho de product comparison functions. Para tornar nosso método viável em um cenário típico de comércio eletrônico, propomos também uma estratégia não supervisionada para gerar exemplos de treino a serem utilizados no processo de aprendizagem. Resultados de experimentos que executamos e descrevemos nessa dissertação indicam que nosso método é capaz de gerar funções adequadas, e que nossa estratégia para geração automática de dados de treino é efetiva para essa tarefa.
|
132 |
Otimização multiobjetivo e programação genética para descoberta de conhecimento em engenhariaRusso, Igor Lucas de Souza 26 January 2017 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-19T15:28:50Z
No. of bitstreams: 1
igorlucasdesouzarusso.pdf: 2265113 bytes, checksum: 0eb7e55f7354359d8fb9419e6e6da17f (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-20T12:28:17Z (GMT) No. of bitstreams: 1
igorlucasdesouzarusso.pdf: 2265113 bytes, checksum: 0eb7e55f7354359d8fb9419e6e6da17f (MD5) / Made available in DSpace on 2017-04-20T12:28:17Z (GMT). No. of bitstreams: 1
igorlucasdesouzarusso.pdf: 2265113 bytes, checksum: 0eb7e55f7354359d8fb9419e6e6da17f (MD5)
Previous issue date: 2017-01-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A área de Otimização envolve o estudo e emprego de métodos para determinação dos
parâmetros que levam à obtenção de soluções ótimas, de acordo com critérios denominados
objetivos. Um problema é classificado como multiobjetivo quando apresenta objetivos
múltiplos e conflitantes, que devem ser otimizados simultaneamente. Recentemente tem
crescido o interesse dos pesquisadores pela análise de pós-otimalidade, que consiste na
busca por propriedades intrínsecas às soluções ótimas de problemas de otimização e que
podem lançar uma nova luz à compreensão dos mesmos. Innovization (inovação através
de otimização, do inglês innovation through optmization) é um processo de descoberta de
conhecimento a partir de problemas de otimização na forma de relações matemáticas
entre variáveis, objetivos, restrições e parâmetros. Dentre as técnicas de busca que
podem ser utilizadas neste processo está a Programação Genética (PG), uma meta
heurística bioinspirada capaz de evoluir programas de forma automatizada. Além de
numericamente válidos, os modelos encontrados devem utilizar corretamente as variáveis
de decisão em relação às unidades envolvidas, de forma a apresentar significado físico
coerente. Neste trabalho é proposta uma alternativa para tratamento das unidades através
de operações protegidas que ignoram os termos inválidos. Além disso, propõe-se aqui uma
estratégia para evitar a obtenção de soluções triviais que não agregam conhecimento sobre
o problema. Visando aumentar a diversidade dos modelos obtidos, propõe-se também a
utilização de um arquivo externo para armazenar as soluções de interesse ao longo da
busca. Experimentos computacionais são apresentados utilizando cinco estudos de caso
em engenharia para verificar a influência das ideias propostas. Os problemas tratados
aqui envolvem os projetos de: uma treliça de 2 barras, uma viga soldada, do corte de
uma peça metálica, de engrenagens compostas e de uma treliça de 10 barras, sendo este
último ainda não explorado na literatura de descoberta de conhecimento. Finalmente, o
conhecimento inferido no estudo de caso da estrutura de 10 barras é utilizado para reduzir
a dimensionalidade do problema. / The area of optimization involves the study and the use of methods to determine the
parameters that lead to optimal solutions, according to criteria called objectives. A
problem is classified as multiobjective when it presents multiple and conflicting objectives
which must be simultaneously optimized. Recently, the interest of the researchers
has grown in the analysis of post-optimality, which consists in the search for intrinsic
properties of the optimal solutions of optimization problems. This can shed a new light on
the understanding of the optimization problems. Innovization (from innovation through
optimization) is a process of knowledge discovery from optimization problems in the form
of mathematical relationships between variables, objectives, constraints, and parameters.
Genetic Programming (GP), a search technique that can be used in this process, is a
bio-inspired metaheuristic capable of evolving programs automatically. In addition to
be numerically valid, the models found must correctly use the decision variables with
respect to the units involved, in order to present coherent physical meaning. In this work,
a method is proposed to handle the units through protected operations which ignore
invalid terms. Also, a strategy is proposed here to avoid trivial solutions that do not add
knowledge about the problem. In order to increase the diversity of the models obtained,
it is also proposed the use of an external file to store the solutions of interest found
during the search. Computational experiments are presented using five case studies in
engineering to verify the influence of the proposed ideas. The problems dealt with here are
the designs of: a 2-bar truss, a welded beam, the cutting of a metal part, composite gears,
and a 10-bar truss. The latter was not previously explored in the knowledge discovery
literature. Finally, the inferred knowledge in the case study of the 10-bar truss structure
is used to reduce the dimensionality of that problem.
|
133 |
Využití evolučních technik v hierarchickém plánování / Evolutionary techniques utilization in hierarchical task networkŘeháková, Lucie January 2016 (has links)
This master thesis describes the design and the implementation of the algorithm solving the domain- independent partial order simple task network planning problem using the tree-based genetic programming. The work contains comparison of several possible approaches to the problem --- it compares different representations, ways of evaluation and approaches to the partial ordering. It defines heuristics to improve the efficiency of the algorithm, including the distance heuristic, the local search and the individual equivalency. The implementation was tested on several experiments to show the abilities, strengths and weaknesses of the algorithm. Powered by TCPDF (www.tcpdf.org)
|
134 |
Uma abordagem baseada em realimentação de relevância para o problema da desambiguação de nome de autores / A relevance feedback approach for the author name disambiguation problemGodoi, Thiago Anzolin de, 1989- 12 June 2013 (has links)
Orientadores: Ariadne Maria Brito Rizzoni Carvalho, Ricardo da Silva Torres / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-24T12:42:46Z (GMT). No. of bitstreams: 1
Godoi_ThiagoAnzolinde_M.pdf: 1782345 bytes, checksum: d9ede100469835a7820e3cc67caae355 (MD5)
Previous issue date: 2013 / Resumo: Este trabalho apresenta um novo método semiautomático para desambiguação de nomes que explora a utilização de iterações com realimentação de relevância. Uma etapa não supervisionada é utilizada para definir exemplos puros para o treinamento, e uma etapa híbrida supervisionada é empregada para aprender a função de classificação que irá atribuir autores a referências. O modelo combina um classificador por floresta de caminhos ótimos (OPF - Optimum-Path Forest) com uma função de similaridade complexa gerada por um algoritmo de Programação Genética (PG). As principais contribuições deste trabalho são: (i) proposta de um novo método para desambiguação de nomes de autores; (ii) avaliação em uma nova aplicação, da combinação entre os algoritmos OPF e PG, também conhecida como GOPF (Genetic Programming e Optimum-Path Forest), incrementada por uma etapa de realimentação de relevância; (iii) avaliação do algoritmo do GOPF em um problema de classificação multiclasse; e (iv) adaptação do algoritmo do GOPF para lidar com problemas de classificação de conjunto aberto, isto é, que não possuem todas as classes definidas previamente. O método proposto foi validado em duas coleções tradicionais muito utilizadas para avaliação de métodos de desambiguação de nomes de autores. A primeira é a coleção extraída da DBLP e que possui 4.287 referências associadas a 220 autores distintos; a segunda é chamada de KISTI, gerada pelo Korea Institute of Science Technology Information, e que contém os primeiros 1000 autores mais frequentes na versão do banco de dados da DBLP no final de 2007. Após 5 iterações de realimentação do usuário, nossa abordagem atingiu os melhores resultados para a desambiguação de nomes de autores quando comparado com os outros métodos existentes que utilizam somente as informações básicas da referência / Abstract: This work presents a new name disambiguation method that exploits user feedback on ambiguous references across iterations. An unsupervised step is used to define pure training samples, and a hybrid supervised step is employed to learn a classification model for assigning references to authors. Our disambiguation method combines the Optimum-Path Forest (OPF) classifier with complex reference similarity functions generated by a Genetic Programming (GP) framework. The main contributions of this work are: (i) proposal of a novel author name desambiguation method; (ii) evaluation in a new application of the combination between GP and OPF algorithms, also known as GOPF, in interaction learning systems; (iii) evaluation of the GOPF algorithm in a multi-class classification problem; and (iv) extension of the GOPF algorithm to handle open-set classification problems, i.e., classification problems in which class samples are not known in advance. The proposed method was validated with two traditional databases largely used for the evaluation of author name disambiguation methods: one is a collection extracted from DBLP which sums up 4,287 references associated with 220 distinct authors; the other is called KISTI and was built by the Korea Institute of Science and Technology Information; it contains the top 1000 most frequent author names from the late-2007 DBLP database. After 5 iterations of relevance feedback, our approach yielded the best results for author name disambiguation when compared with the state-of-the-art methods that just consider basic reference information, such as author names, publication title, and venue title / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
135 |
Dolovanie znalostí z textových dát použitím metód umelej inteligencie / Text Mining Based on Artificial Intelligence MethodsPovoda, Lukáš January 2018 (has links)
This work deals with the problem of text mining which is becoming more popular due to exponential growth of the data in electronic form. The work explores contemporary methods and their improvement using optimization methods, as well as the problem of text data understanding in general. The work addresses the problem in three ways: using traditional methods and their optimizations, using Big Data in train phase and abstraction through the minimization of language-dependent parts, and introduction of the new method based on the deep learning which is closer to how human reads and understands text data. The main aim of the dissertation was to propose a method for machine understanding of unstructured text data. The method was experimentally verified by classification of text data on 5 different languages – Czech, English, German, Spanish and Chinese. This demonstrates possible application to different languages families. Validation on the Yelp evaluation database achieve accuracy higher by 0.5% than current methods.
|
136 |
Koevoluce prediktorů fitness v kartézském genetickém programování / Coevolution of Fitness Predicotrs in Cartesian Genetic ProgrammingDrahošová, Michaela January 2017 (has links)
Kartézské genetické programován (CGP) je evoluc inspirovaná metoda strojového učen, která je primárně určená pro automatizovaný návrh programů a čslicových obvodů. CGP je úspěšné v řešen mnoha úloh z reálného světa. Avšak k nalezen inovativnch řešen obvykle potřebuje značný výpočetn výkon. Každý kandidátn program navržený pomoc CGP mus být spuštěn, aby se zjistilo, do jaké mry tento program řeš zadaný problém, a mohla mu být přiřazena fitness hodnota. Právě vyhodnocen fitness bývá výpočetně nejnáročnějš část návrhu pomoc CGP. Tato práce se zabývá využitm koevoluce prediktorů fitness v CGP za účelem zrychlen procesu evolučnho návrhu prováděného pomoc CGP. Prediktor fitness je malá podmnožina trénovacch dat použvaná pro rychlý odhad fitness hodnoty namsto náročného vyhodnocen objektivn fitness hodnoty. Koevoluce prediktorů fitness je optimalizačn metoda modelován fitness, která snižuje náročnost a frekvenci výpočtu fitness. V této práci je koevolučn algoritmus přizpůsoben pro CGP a jsou představeny a zkoumány tři přstupy k zakódován prediktorů fitness. Představená metoda je experimentálně vyhodnocena v pěti úlohách symbolické regrese a v úloze návrhu obrazových filtrů. Výsledky experimentů ukazuj, že pomoc této metody lze významně snžit výpočetn čas, který CGP potřebuje pro řešen zkoumané třdy úloh.
|
137 |
Koevoluce obrazových filtrů a detektorů šumu / Coevolution of Image Filters and Noise DetectorsKomjáthy, Gergely January 2014 (has links)
This thesis deals with image filter design using coevolutionary algorithms. It contains a description of evolutionary algorithms, focusing on genetic programming, cartesian genetic programming and coevolution, the reader can learn about image filters too. The next chapters contain the design of image filters and noise detectors using cooperative coevolution, and the implementation and testing of the proposed filter. In the last chapter the proposed filter is compared to other filters created using evolutionary algorithms but without coevolution.
|
138 |
Evoluční návrh konvolučních neuronových sítí / Evolutionary Design of Convolutional Neural NetworksPiňos, Michal January 2020 (has links)
The aim of this work is to design and implement a program for automated design of convolutional neural networks (CNN) with the use of evolutionary computing techniques. From a practical point of view, this approach reduces the requirements for the human factor in the design of CNN architectures, and thus eliminates the tedious and laborious process of manual design. This work utilizes a special form of genetic programming, called Cartesian genetic programming, which uses a graph representation for candidate solution encoding.This technique enables the user to parameterize the CNN search process and focus on architectures, that are interesting from the view of used computational units, accuracy or number of parameters. The proposed approach was tested on the standardized CIFAR-10dataset, which is often used by researchers to compare the performance of their CNNs. The performed experiments showed, that this approach has both research and practical potential and the implemented program opens up new possibilities in automated CNN design.
|
139 |
Umělá inteligence v real-time strategiích / Artificial Intelligence for Real-time Strategy GamesKurňavová, Simona January 2021 (has links)
Real-time strategy games are an exciting area of research, as creating a game AI poses many challenges - from managing a single unit to completing an objective of the game. This thesis explores possible solutions to this task, using genetic programming and neuroevolution. It presents and compares findings and differences between the models. Both methods performed reasonably well, but genetic programming was found to be a bit more effective in performance and results.
|
140 |
Návrh rozhodovacích stromů na základě evolučních algoritmů / Decision Tree Design Based on Evolutionary AlgorithmsBenda, Ondřej January 2012 (has links)
Tato diplomová práce pojednává o dvou algoritmech pro dolování z proudu dat - Very Fast Decision Tree (VFDT) a Concept-adapting Very Fast Decision Tree (CVFDT). Je vysvětlen princip klasifikace rozhodovacím stromem. Je popsána základní myšlenka konstrukce stromu Hoeffding Tree, který je základem pro algoritmy VFDT a CVFDT. Tyto algoritmy jsou poté rozebrány detailněji. Dále se tato práce zabývá návrhem algoritmu Genetického Programování (GP), který je použit pro vytváření klasifikátoru obrazových dat. Vytvořený klasifikátor je použit jako alternativní způsob klasifikace objektů v obraze ve frameworku Viola-Jones. V práci je rozebrána implementace algoritmů, které jsou implementovány v jazyce Java. Algoritmus GP je integrován do knihovny “Image Processing Extension” programu RapidMiner. Algoritmy VFDT a CVFDT jsou testovány na syntetických a reálných textových datech. Algoritmus GP je testován na klasifikaci obrazových dat a následně vytvořený klasifikátor je otestován na detekci obličejů v obraze.
|
Page generated in 0.0503 seconds