Spelling suggestions: "subject:"[een] GLOBAL ILLUMINATION"" "subject:"[enn] GLOBAL ILLUMINATION""
71 |
Nanášení fotonů na hierarchii obrazových vzorků / Photon Splatting Using a View-Sample Cluster HierarchyKiss, Marcel January 2019 (has links)
This thesis deals with the techniques of global illumination of the scene. The theoretical part discusses various techniques, focusing on processing in real-time using various optimization methods. It focuses to the technology of photon splatting using view sample cluster hierarchy. The main part is analysis, implenetation and measurement of mentioned method.
|
72 |
Photon tracing na GPU / Photon Tracing on GPUGalacz, Roman January 2013 (has links)
Subject of this thesis is acceleration of the photon mapping method on a graphic card. The photon mapping is a method for computing almost realistic global illumination of the scene. The computation itself is relatively time-consuming, so the acceleration of it is a hot issue in the field of computer graphics. The photon mapping is described in detail from photon tracing to rendering of the scene. The thesis is then focused on spatial subdivision structures, especially to the uniform grid. The design and the implementation of the application computing the photon mapping on GPU, which is achieved by OpenGL and CUDA interoperability, is described in the next part of the thesis. Lastly, the application is tested properly. The achieved results are reviewed in the conclusion of the thesis.
|
73 |
A Physically Based Pipeline for Real-Time Simulation and Rendering of Realistic Fire and Smoke / En fysiskt baserad rörledning för realtidssimulering och rendering av realistisk eld och rökHe, Yiyang January 2018 (has links)
With the rapidly growing computational power of modern computers, physically based rendering has found its way into real world applications. Real-time simulations and renderings of fire and smoke had become one major research interest in modern video game industry, and will continue being one important research direction in computer graphics. To visually recreate realistic dynamic fire and smoke is a complicated problem. Furthermore, to solve the problem requires knowledge from various areas, ranged from computer graphics and image processing to computational physics and chemistry. Even though most of the areas are well-studied separately, when combined, new challenges will emerge. This thesis focuses on three aspects of the problem, dynamic, real-time and realism, to propose a solution in form of a GPGPU pipeline, along with its implementation. Three main areas with application in the problem are discussed in detail: fluid simulation, volumetric radiance estimation and volumetric rendering. The weights are laid upon the first two areas. The results are evaluated around the three aspects, with graphical demonstrations and performance measurements. Uniform grids are used with Finite Difference (FD) discretization scheme to simplify the computation. FD schemes are easy to implement in parallel, especially with ComputeShader, which is well supported in Unity engine. The whole implementation can easily be integrated into any real-world applications in Unity or other game engines that support DirectX 11 or higher.
|
74 |
Zobrazování voxelových scén pomocí ray tracingu v reálném čase / Rendering of Voxel-Based Scenes Using Real-Time Ray TracingMenšík, Jakub January 2021 (has links)
The aim of this work was to create a program to visualize voxel scenes in real time using ray tracing. It included the study of various methods of such a rendering with a focus on shadows. The solution was created using Unity engine and experimental packages Unity Jobs and Burst. The thesis presents multiple ray tracing passes and SVGF technique, that is used to turn a noisy input into full edge-preserving image. The final program is able to render hard shadows, soft shadows, and ambient occlusion at speed of fifty frames per second.
|
Page generated in 0.0291 seconds