Spelling suggestions: "subject:"[een] GLOBAL ILLUMINATION"" "subject:"[enn] GLOBAL ILLUMINATION""
41 |
Representação e calculo eficiente da iluminação global na sintese de imagem / Efficient computation of global illumination for image synthesisPereira, Danillo Roberto, 1984- 13 August 2018 (has links)
Orientadores: Anamaria Gomide, Jorge Stolfi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-13T10:58:35Z (GMT). No. of bitstreams: 1
Pereira_DanilloRoberto_M.pdf: 891270 bytes, checksum: 71a9debc6a10f8de7083dd3e33c649a6 (MD5)
Previous issue date: 2009 / Resumo: A geração de imagens fotorrealisticas e um desafio importante em computação gráfica. Um ingrediente critico para a obtenção do realismo esta o modelo de iluminação. Em 1986, Jim Kajiya apresentou uma equação integral que define o fluxo de luz (radiosidade) num ambiente de maneira precisa; contudo, ate recentemente, os métodos conhecidos para a resolução dessa equação tinham custo computacional e complexidade de implementação elevados. Em 2008, Jaako Lehtinen desenvolveu uma técnica relativamente simples e eficiente para o calculo da iluminação global em cenas virtuais, usando elementos finitos definidos por pontos de amostragem. Neste projeto de Mestrado, implementamos esse método, e comparamos o resultado usando três tipos diferentes de bases: uma base radial, uma base radial normalizada e uma base de Shepard. Alem da comparação visual, calculamos a radiosidade "exata" para uma cena simples e comparamos quantitativamente esse resultado com os resultados do método de Lehtinen com cada uma das três bases. / Abstract: The generation of realistic images is a major challenge in computer graphics. A critical ingredient for realistic rendering is the lighting model. In 1986, Jim Kajiya presented an integral equation that precisely defines the light flow (radiosity) in a virtual environment; however, until recently, the known methods for solving that equation had high computational cost and implementation complexity. In 2008, Jaako Lehtinen developed a relatively simple and efficient technique for the computation of global illumination in virtual scenes, using finite elements defined by sampling points. In this Masters project, we implemented that method, and compared the results using three different types of bases: a radial basis, a normalized radial basis, and a Shepard basis. Besides visual comparison, we computed the "exact" radiosity for a simple scene and compared quantitatively that result with the results obtained by Lehtinen's method with each of the three bases. / Mestrado / Computação Grafica / Mestre em Ciência da Computação
|
42 |
CÃlculo do Fator-de-Forma exato entre Ãreas Diferencial e Finita Usando CSG / Computation the exact form factor between a finite area and a differential area using CSGIsaac Moreira Barreto 10 March 2008 (has links)
Universidade Federal do Cearà / Os mÃtodos de Ray-Tracing e Radiosidade sÃo os principais representantes dos mÃtodos existentes para resolver o problema de iluminaÃÃo global. Em ambos os mÃtodos se faz necessÃrio saber a taxa de transferÃncia de energia luminosa entre duas Ãreas. Essa taxa de transferÃncia, chamada de fator-de-forma, à um dos pontos principais no mÃtodo de Radiosidade e vem sendo usado cada vez com mais frequÃncia em mÃtodos de Ray-Tracing com fontes luminosas de Ãrea finita. Existem vÃrios mÃtodos para o cÃlculo do fator-de-forma, a maioria deles sÃo aproximativos por uma questÃo de desempenho. PorÃm, em casos especÃficos, o trabalho extra para calcular o valor exato do fator-de-forma pode melhorar o desempenho global do mÃtodo. Em geral, nesses casos, o esforÃo necessÃrio para se obter uma aproximaÃÃo aceitÃvel do valor do fator-de-forma supera o esforÃo necessÃrio para calcular o valor exato em si. AlÃm disso, existem situaÃÃes, tais como a renderizaÃÃo nas Ãreas de fronteiras de sombras, em que uma alta precisÃo à mais importante do que um ganho no desempenho. Nessas situaÃÃes, à desejÃvel que o mÃtodo tenha ao seu dispor uma maneira de calcular o valor exato do fator-de-forma. Neste trabalho à apresentado um mÃtodo para calcular o fator-de-forma exato entre uma Ãrea finita e uma Ãrea diferencial que utiliza de tÃcnicas CSG para identificar as Ãreas ocluÃdas do polÃgono emissor. / The Ray-Tracing and Radiosity methods are the main representatives of the method that solve the global illumination problem. In both mthods it is necessary to know the energy tranfer ratio between two areas. This ratio, called form factor, is one of the key concepts in Radiosity methods and is being more frequently used in Ray-Tracing methods with finite area light sources. There are many methods for the computation of the form factor, most of them are approximative due to a matter of performance, but, in some specific cases, the extra computational effort needed to compute the exact value of the form factor can improve the overall performance of the illumination method. In general, in these cases, the computational effort needed to obtain an acceptable approximation of the form factor outweighs the effort necessary to compute the exact value. Furthermore there are situation, for example, shadow boundary shading, in which a high precision is far more important than a performance gain. In this work we present a method to compute the exact form factor between a finite area and a differential area which uses CSG techniques to identify the ooccluded areas of the source.
|
43 |
[en] VISUALIZATION OF SEISMIC VOLUMETRIC DATE USING A DIRECTIONAL OCCLUSION SHADING MODEL / [pt] VISUALIZAÇÃO VOLUMÉTRICA DE DADOS SÍSMICOS UTILIZANDO UM MODELO DE ILUMINAÇÃO POR OCLUSÃO DIRECIONALMARCELO MEDEIROS ARRUDA 26 March 2013 (has links)
[pt] A interpretação de dados sísmicos é de fundamental importância para a industria de óleo e gás. Uma vez que esses tipos de dados possuem um caráter volumétrico, não é tão simples se identificar e selecionar atributos presentes em sua estrutura 3D. Além disso, a grande presença de ruídos e concavidades acentuadas nesse tipo de dado aumenta a complexidade de sua manipulação e visualização. Devido a essas características, a geometria do dado é muito complexa, sendo necessários modelos de iluminação mais realísticos para realizar a iluminação do volume sísmico. Este trabalho consiste em realizar a visualização volumétrica de dados sísmicos baseada no algoritmo de traçado de raios, utilizando um modelo de iluminação por oclusão direcional, calculando a contribuição de luz ambiente que chega a cada elemento do volume. Desta forma, conseguimos realçar a geometria do dado sísmico, sobretudo onde as concavidades e falhas são mais acentuadas. O algoritmo proposto foi inteiramente implementado em placa gráfica, permitindo manipulação a taxas interativas, sem a necessidade de pré-processamento. / [en] The interpretation of seismic volumetric data has a major importance for the oil and gas industry. Since these data types have a volumetric character mode, identify and select attributes present in this struct become a difficult task. Furthemore, the high-frequecy noise and depth information typically found in this type of data, increasesthe complexity of their manipulation and visualization. Due to these characteristics, the geometry of 3D sismic data is very complexy and is necessary more realistic light model to perfom the illumnination of the seismic volume. This work consists of performing a volumetric visualization of seismic data based on ray tracing algorithm, using an illumination model by directional occlusion, computing the ambiente light attenuated by the elements in the light trajetory for all elements in the volume. Thus, we emphasize the geometry of the seismic data, especially the depth cues and spatial relationship. The proposed algorithm was fully implemented on graphics card, allowing at interactive rates, without any pre-processing.
|
44 |
Analyse spatiale et spectrale des motifs d'échantillonnage pour l'intégration Monte Carlo / Spatial and spectral analysis of sampling patterns for Monte Carlo integrationPilleboue, Adrien 19 November 2015 (has links)
L’échantillonnage est une étape clé dans le rendu graphique. Il permet d’intégrer la lumière arrivant en un point de la scène pour en calculer sa couleur. Généralement, la méthode utilisée est l’intégration Monte Carlo qui approxime cette intégrale en choisissant un nombre fini d’échantillons. La réduction du biais et de la variance de l’intégration Monte Carlo est devenue une des grandes problématiques en rendu réaliste. Les techniques trouvées consistent à placer les points d’échantillonnage avec intelligence de façon à rendre la distribution la plus uniforme possible tout en évitant les régularités. Les années 80 ont été de ce point de vue un tournant dans ce domaine, avec l’apparition de nouvelles méthodes stochastiques. Ces méthodes ont, grâce à une meilleure compréhension des liens entre intégration Monte Carlo et échantillonnage, permis de réduire le bruit et la variance des images générées, et donc d’améliorer leur qualité. En parallèle, la complexité des méthodes d’échantillonnage s’est considérablement améliorée, permettant d’obtenir des méthodes à la fois rapides et efficaces en termes de qualité. Cependant, ces avancées ont jusqu’à là été faites par tâtonnement et se sont axées sur deux points majeurs : l’amélioration de l’uniformité du motif d’échantillonnage et la suppression des régularités. Bien que des théories permettant de borner l’erreur d’intégration existent, elles sont souvent limitées, voire inapplicables dans le domaine de l’informatique graphique. Cette thèse propose de rassembler les outils d’analyse des motifs d’échantillonnages et de les mettre en relation. Ces outils peuvent caractériser des propriétés spatiales, comme la distribution des distances entre points, ou bien spectrales à l’aide de la transformée de Fourier. Nous avons ensuite utilisé ces outils afin de donner une expression simple de la variance et du biais dans l’intégration Monte Carlo, en utilisant des prérequis compatibles avec le rendu d’image. Finalement, nous présentons une boite à outils théorique permettant de déterminer la vitesse de convergence d’une méthode d’échantillonnage à partir de son profil spectral. Cette boite à outils est notamment utilisée afin de classifier les méthodes d’échantillonnage existantes, mais aussi pour donner des indications sur les principes fondamentaux nécessaires à la conception de nouveaux algorithmes d’échantillonnage / Sampling is a key step in rendering pipeline. It allows the integration of light arriving to a point of the scene in order to calculate its color. Monte Carlo integration is generally the most used method to approximate that integral by choosing a finite number of samples. Reducing the bias and the variance of Monte Carlo integration has become one of the most important issues in realistic rendering. The solutions found are based on smartly positioning the samples points in a way that maximizes the uniformity of the distribution while avoiding the regularities. From this point of view, the 80s were a turning point in this domain, as new stochastic methods appeared. With a better comprehension of links between Monte Carlo integration and sampling, these methods allow the reduction of noise and of variance in rendered images. In parallel, the complexity of sampling methods has considerably enhanced, enabling to have fast as well as good quality methods. However, these improvements have been done by trial and error focusing on two major points : the improvement of sampling pattern uniformity, and the suppression of regularities. Even though there exists some theories allowing to bound the error of the integration, they are usually limited, and even inapplicable in computer graphics. This thesis proposes to gather the analysis tools of sampling patterns and to connect them together. These tools can characterize spatial properties such as the distribution of distances between points, as well as spectral properties via Fourier transformation. Secondly, we have used these tools in order to give a simple expression of the bias and the variance for Monte Carlo integration ; this is done by using prerequisites compatible with image rendering. Finally, we present a theoretical toolbox allowing to determine the convergence speed of a sampling method from its spectral profile. This toolbox is used specifically to give indications about the design principles necessary for new sampling algorithms
|
45 |
Výpočet osvětlení ve scéně v reálném čase / Real-Time Illumination of a SceneMartanovič, Lukáš January 2013 (has links)
This thesis is focused on describing methods of computation of global illumination of 3D graphics scenes in real-time. First chapter contains brief introduction to the issue of global illumination (GI) computation, as well as quick summarisation of principles of most commonly used GI computation approaches. A method of visibility computing for indirect illumination, taking advantage of Imperfect Shadow Mapping, is introduced next. After closer examination of this method and prerequisite algorithms follows a description of its practical implementation, as well as of the structure of simple demonstrative application. Next chapter then contains testing and brief examination and evaluation of resulting program's behaviour. Finally, a possible method extension by means of virtual point light clustering is proposed.
|
46 |
Voxel Cone Tracing / Voxel Cone TracingPracuch, Michal January 2016 (has links)
This thesis deals with the global illumination in the scene by using Voxel Cone Tracing method. It is based on the voxelization of a triangle mesh scene. The voxels can be stored to a full regular 3D grid (texture) or to the hierarchic Sparse Voxel Octree for saving of the memory space. This voxel representation is further used for computations of the global indirect illumination in real time within normal triangle mesh scenes for more realistic final image. Values from the voxels are obtained by tracing cones from the pixels which we want to get illumination for.
|
47 |
Peinture de lumière incidente dans des scènes 3DRozon, Frédérik 08 1900 (has links)
Le design d'éclairage est une tâche qui est normalement faite manuellement, où les artistes doivent manipuler les paramètres de plusieurs sources de lumière pour obtenir le résultat désiré. Cette tâche est difficile, car elle n'est pas intuitive. Il existe déjà plusieurs systèmes permettant de dessiner directement sur les objets afin de positionner ou modifier des sources de lumière. Malheureusement, ces systèmes ont plusieurs limitations telles qu'ils ne considèrent que l'illumination locale, la caméra est fixe, etc. Dans ces deux cas, ceci représente une limitation par rapport à l'exactitude ou la versatilité de ces systèmes. L'illumination globale est importante, car elle ajoute énormément au réalisme d'une scène en capturant toutes les interréflexions de la lumière sur les surfaces. Ceci implique que les sources de lumière peuvent avoir de l'influence sur des surfaces qui ne sont pas directement exposées.
Dans ce mémoire, on se consacre à un sous-problème du design de l'éclairage: la sélection et la manipulation de l'intensité de sources de lumière. Nous présentons deux systèmes permettant de peindre sur des objets dans une scène 3D des intentions de lumière incidente afin de modifier l'illumination de la surface. De ces coups de pinceau, le système trouve automatiquement les sources de lumière qui devront être modifiées et change leur intensité pour effectuer les changements désirés. La nouveauté repose sur la gestion de l'illumination globale, des surfaces transparentes et des milieux participatifs et sur le fait que la caméra n'est pas fixe. On présente également différentes stratégies de sélection de modifications des sources de lumière.
Le premier système utilise une carte d'environnement comme représentation intermédiaire de l'environnement autour des objets. Le deuxième système sauvegarde l'information de l'environnement pour chaque sommet de chaque objet. / Lighting design is usually a task that is done manually, where the artists must manipulate the parameters of several light sources to obtain the desired result. This task is difficult because it is not intuitive. Some systems already exist that enable a user to paint light directly on objects in a scene to position or alter light sources. Unfortunately, these systems have some limitations such that they only consider local lighting, or the camera must be fixed, etc. Either way, this limitates the accuracy or the versatility of these systems. Global illumination is important because it adds a lot of realism to a scene by capturing all the light interreflections on the surfaces. This means that light sources can influence surfaces even if they are not directly exposed.
In this M. Sc. thesis, we study a subset of the lighting design problem: the selection and alteration of the intensity of light sources. We present two different systems to design lighting on objects in 3D scenes. The user paints light intentions directly on the objects to alter the surface illumination. From these paint strokes, the systems find the light sources and alter their intensity to obtain as much as possible what the user wants. The novelty of our technique is that global illumination, transparent surfaces and subsurface scattering are all considered, and also that the camera is free to take any position. We also present strategies for selecting and altering the light sources.
The first system uses an environment map as an intermediate representation of the environment surrounding the objects. The second system saves all the information of the environment for each vertex of each object.
|
48 |
Modes de représentation pour l'éclairage en synthèse d'imagesPacanowski, Romain 09 1900 (has links)
Réalisé en cotutelle avec l'Université Bordeaux 1 (France) / En synthèse d'images, le principal calcul à effectuer pour générer une
image a été formalisé dans une équation
appelée équation du rendu [Kajiya1986]. Cette équation est la
intègre la conservation de l'\'energie dans le transport de la lumi\`ere.
Elle stipule que l'énergie lumineuse renvoyée, par les objets d'une
scène,
dans une direction donnée
est égale à la somme de l'énergie
émise et réfléchie par ceux-ci. De plus, l'énergie réfléchie par un
élément de surface
est définie comme la convolution de l'éclairement
incident avec une fonction de réflectance. Cette dernière
modélise le matériau (au sens physique) de l'objet et joue le rôle
d'un filtre directionnel et énergétique dans l'équation du rendu,
simulant ainsi la manière dont la surface se comporte vis-à-vis d'une
réflexion. Dans ce mémoire de thèse, nous introduisons de nouvelles
représentations pour la fonction de réflectance ainsi que pour la
représentation de l'éclairement incident.
Dans la première partie de ce mémoire, nous proposons deux nouveaux
modèles pour représenter la fonction de réflectance.
Le premier modèle s'inscrit dans une démarche artistique
et est destiné à faciliter la création et
l'édition des reflets spéculaires. Son principe est de laisser
l'utilisateur peindre et esquisser les caractéristiques (forme,
couleur, gradient et texture) du reflet spéculaire dans un plan de
dessin paramétrisé en fonction de la direction de la réflexion miroir de la lumière.
Le but du second modèle est de représenter de manière compacte et
efficace les mesures des matériaux isotropes. Pour ce faire, nous
introduisons une nouvelle représentation à base de polynômes
rationnels. Les coefficients de ces derniers sont obtenus à
l'aide d'un processus d'approximation qui garantit une solution optimale au
sens de la convergence.
Dans la seconde partie de ce mémoire, nous introduisons une nouvelle
représentation volumétrique pour l'éclairement indirect représenté
directionnellement à l'aide de vecteurs d'irradiance. Nous montrons
que notre représentation est compacte et robuste aux variations
géométriques et qu'elle peut être utilisée
comme système de cache pour du rendu temps réel ou non, ainsi que dans
le cadre de la transmission progressive des données (streaming).
Enfin, nous proposons deux types de modifications de
l'éclairement incident afin de mettre en valeur les détails et les
formes d'une surface. Le première modification consiste à perturber les
directions de l'éclairement incident tandis que la seconde consiste à
en modifier l'intensité. / In image synthesis, the main computation involved to generate an image
is characterized by an equation named rendering equation
[Kajiya1986]. This equation represents the law of energy
conservation. It stipulates that the light emanating from the scene
objects is the sum of the emitted energy and the reflected
energy. Moreover, the reflected energy at a surface point is defined
as the convolution of the incoming lighting with a reflectance
function. The reflectance function models the object material and
represents, in the rendering equation, a directional and energetic
filter that describes the surface behavior regarding the
reflection. In this thesis, we introduce new representations for the
reflectance function and the incoming lighting.
In the first part of this thesis, we propose two new models for the
reflectance function. The first model is targeted for artists
to help them create and edit highlights. Our main idea is to let
the user paint and sketch highlight characteristics (shape, color,
gradient and texture) in a plane parametrized by the incident lighting
direction.
The second model is designed to represent efficiently
isotropic material data. To achieve this result, we introduce a new
representation of the reflectance function that uses rational
polynomials. Their coefficients are computed using a fitting process
that guarantees an optimal solution regarding convergence.
In the second part of this thesis, we introduce a new volumetric
structure for indirect illumination that is
directionally represented with irradiance vector. We show that our
representation is compact and robust to geometric variations, that
it can be used as caching system for interactive and offline rendering
and that it can also be transmitted with streaming techniques.
Finally, we introduce two modifications of the incoming lighting to
improve the shape depiction of a surface.
The first modification consists in warping the incoming light
directions whereas the second one consists in scaling the intensity of
each light source.
|
49 |
Amélioration du photon mapping pour un scénario walkthrough dans un objectif de rendu physiquement réaliste en temps réel .Graglia, Florian 26 November 2012 (has links)
L'un des objectifs lors du développement d'un produit industriel est d'obtenir un prototype numérique valide et réaliste. Cette thèse a pour objectif d'améliorer la qualité des simulations dans le contexte d'un processus de production. Ces processus impliquent souvent un rendu de type "walkthrough", avec une géométrie fixe mais un déplacement continu de l'observateur. Nous nous intéresserons donc plus précisément aux méthodes de rendu physiquement réaliste de scènes complexes pour un scénario "walkthrough". Durant le rendu, l'utilisateur doit pouvoir mesurer précisément la radiance d'un point ou d'une zone donnée, ainsi que modifier en temps réel la puissance des sources lumineuses. Fondée sur la méthode du photon mapping, nos travaux montrent les modifications à apporter aux algorithmes afin d'améliorer à la fois la qualité des images et le temps de calcul du processus de rendu. / One of the goals when developing the product is to immediately obtain a real and valid prototype. This thesis provide new rendering methods to increase the quality of the simulations during the upstream work of the production pipeline. The latter usually requires a walkthrough rendering. Thus, we focuses on the physically-based rendering methods of complex scenes in walkthrough. During the rendering, the end-users must be able to measure the illuminate rates and to interactively modify the power of the light source to test different lighting ambiances. Based on the original photon mapping method, our work shows how some modifications can decrease the calculation time and improve the quality of the resulting images according to this specific context.
|
50 |
Energy-Efficient Photon MappingLight, Brandon W 10 May 2007 (has links)
Mobile devices such as cell phones, personal digital assistants (PDAs), and laptops continue to increase in memory and processor speed at a rapid pace. In recent years it has become common for users to check their email, browse the internet, or play music and movies while traveling. The performance gains are also making mobile graphics renderers more viable applications. However, the underlying battery technology that powers mobile devices has only tripled in capacity in the past 15 years whereas processor speeds have seen a 100-fold increase in the same period. Photon mapping, an extension of ray-tracing, is a robust global illumination algorithm used to produce photorealistic images. Photon mapping, like ray-tracing, can render high-quality specular highlights, transparent and reflective materials, and soft shadows. Complex effects such as caustics, participating media, and subsurface scattering can be rendered more efficiently using photon mapping. This work profiles the energy use of a photon-mapping based renderer to first establish what aspects require the most energy. Second, the effect several photon mapping settings have on image quality is measured. Reasonable tradeoffs between energy savings and moderately diminished image quality can then be recommended, making photon mapping more viable on mobile devices. Our results show that image quality is affected the least as settings corresponding to final gather computations are adjusted. This implies that a user can trade a modest decrease in image quality for significant gains in energy efficiency. Suggestions are made for using energy more efficiently when rendering caustics. Results also show that, although overall energy use is higher with larger image resolutions, per-pixel energy costs are cheaper.
|
Page generated in 0.0483 seconds