• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 181
  • 43
  • 30
  • 12
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • Tagged with
  • 734
  • 171
  • 169
  • 160
  • 145
  • 112
  • 95
  • 80
  • 56
  • 56
  • 54
  • 53
  • 49
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Histopathology and Oxidative Stress Analysis of Concomitant Misoprostol and Celecoxib Administration

Murrell, Derek E., Denham, James W., Harirforoosh, Sam 03 August 2015 (has links)
Nonsteroidal anti-inflammatory drugs (NSAIDs), non-selective or selective inhibitors of cyclooxygenase (COX-1 and -2), reduce pain and inflammation associated with arthritic diseases. Celecoxib, a COX-2-selective inhibitor providing decreased gastric injury relative to non-selective NSAIDs, is commonly prescribed. Misoprostol, a prostaglandin analog, supplements NSAID-inhibited prostaglandin levels. As concomitant celecoxib and misoprostol administration has been shown to intensify renal adverse effects, this article examined the influence of concomitant administration on hepatic histopathology, oxidative stress, and celecoxib concentration. On days 1 and 2, rat groups (n = 6) were gavaged twice daily (two groups with vehicle and two groups with 100 μg/kg misoprostol). From day 3 to day 9, one celecoxib dose (40 mg/kg) replaced a vehicle dose of one group and one group received celecoxib in addition to misoprostol. Livers were harvested on day 10. No hepatic abnormalities were observed denoting a lack of influence by either drug. Also no change in mean biomarker levels was detected. The changes in hepatic celecoxib concentration in the misoprostol-receiving group compared to control were not significant. Thus misoprostol does not influence hepatic celecoxib effects in terms of histopathology, oxidative stress, or celecoxib concentration level at the dosage and duration examined.
232

Preparation, Characterization, and Use of Antioxidant-Liposomes

Yang, Hongsong, Paromov, Victor, Smith, Milton, Stone, William L. 01 December 2008 (has links)
Antioxidant liposomes provide a unique means of delivering both water and/or lipid soluble antioxidants to tissues thereby affecting disease states or signal transduction pathways modulated by oxidative stress. Considerable evidence suggests that liposome-encapsulated antioxidants can be superior to the corresponding free antioxidants in this regard. This chapter will provide practical details on the preparation, characterization, and use of antioxidant liposomes. Methods will be described for the small-scale preparation (1 ml) and large-scale (100 ml/hour) preparation of antioxidant liposomes as well as the techniques for characterizing their size distribution and their physical and chemical stability. The use of antioxidant liposomes in an in vitro situation will also be detailed.
233

Effect of Chronic Methylphenidate Treatment in a Female Experimental Model of Parkinsonism

Oakes, Hannah V., McWethy, David, Ketchem, Shannon, Tran, Lily, Phillips, Kaitlyn, Oakley, Laura, Smeyne, Richard J., Pond, Brooks B. 01 June 2021 (has links)
Methylphenidate (MPH) is the most commonly prescribed drug for the treatment of ADHD in males and females. However, a majority of previous studies investigated the effect of MPH in only males, and little is known regarding consequences of female exposure to MPH. This is unfortunate because the few studies that have been conducted indicate that females have a greater sensitivity to MPH. Previous research in male mice has shown that chronic exposure to MPH causes dopaminergic neurons within the nigrostriatal pathway to be more sensitive to the Parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, estrogen has been shown to protect dopaminergic neurons from MPTP neurotoxicity. Therefore, in this study, we test the hypothesis that chronic MPH exposure in female mice will render dopaminergic neurons in the nigrostriatal pathway more sensitive to MPTP, and that estrogen may play a protective role. Interestingly, proestrus females exhibited greater sensitivity to MPTP, with significantly reduced dopaminergic neurons in the SN and significant increases in DA quinone production. Chronic MPH exposure contributed to GSH depletion, but surprisingly, it did not increase dopamine quinone levels or dopaminergic cell loss. There were no significant differences in anestrus animals, with the exception of a depletion in GSH seen when animals received chronic high-dose (10 mg/kg) MPH followed by MPTP. Thus, estrogen may actually sensitize neurons to MPTP in this model, and chronic MPH may contribute to GSH depletion within the striatum. This study provides insight into how chronic psychostimulant use may affect males and females differently.
234

Chronic Methylphenidate Induces Increased Quinone Production and Subsequent Depletion of the Antioxidant Glutathione in the Striatum

Oakes, Hannah V., Ketchem, Shannon, Hall, Alexis N., Ensley, Tucker, Archibald, Kristen M., Pond, Brooks B. 01 December 2019 (has links)
Background: Methylphenidate (Ritalin®) is a psychostimulant used chronically to treat attention deficit hyperactivity disorder. Methylphenidate acts by preventing the reuptake of dopamine and norepinephrine, resulting in an increase in these neurotransmitters in the synaptic cleft. Excess dopamine can be autoxidized to a quinone that may lead to oxidative stress. The antioxidant, glutathione helps to protect the cell against quinones via conjugation reactions; however, depletion of glutathione may result from excess quinone formation. Chronic exposure to methylphenidate appears to sensitize dopaminergic neurons to the Parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We hypothesized that oxidative stress caused by the autooxidation of the excess dopamine renders dopaminergic neurons within the nigrostriatal pathway to be more sensitive to MPTP. Methods: To test this hypothesis, male mice received chronic low or high doses of MPH and were exposed to saline or MPTP following a 1-week washout. Quinone formation in the striatum was examined via dot blot, and striatal GSH was quantified using a glutathione assay. Results: Indeed, quinone formation increased with increasing doses of methylphenidate. Additionally, methylphenidate dose-dependently resulted in a depletion of glutathione, which was further depleted following MPTP treatment. Conclusions: Thus, the increased sensitivity of dopamine neurons to MPTP toxicity following chronic methylphenidate exposure may be due to quinone production and subsequent depletion of glutathione.
235

Effects of pressurization on the digestibility and glutathione inducing property of whey protein isolates in rats and mice

Jing, Yan, 1975- January 2005 (has links)
No description available.
236

Schistosoma mansoni : role of antioxidant systems in protection of developmental stages against oxidative killing and the effects of oltipraz on glutathione S-transferase

Nare, Bakela January 1991 (has links)
No description available.
237

Glutathione metabolism in the rat under varied nutritional conditions

Hum, Susan January 1991 (has links)
No description available.
238

Mechanistic Studies of Thiol Additions to Electrophilic Warheads

Watt, Sarah 25 July 2023 (has links)
Targeted covalent inhibitors (TCIs) are irreversible enzyme inhibitors that are designed to first bind to a targeted enzyme’s active site reversibly using non-covalent interactions between the molecular scaffold of the inhibitor and the surrounding amino acid residues of the enzyme’s binding site. They then form a covalent bond between the inhibitor’s electrophilic warhead and a nucleophilic amino acid residue located inside of the binding pocket. Cysteine (Cys), a redox-sensitive thiol, is found in many enzyme active sites and is used as the target for many current TCIs in clinical application. Electrophilic warheads such as acrylamides and chloroacetamides are known to readily undergo thiol-addition, and although they are commonly used in the development of enzyme inhibitors, few previous studies have explored the mechanism of thiol-addition and the intrinsic reactivities of these moieties. In this work, a robust kinetic assay was developed to perform mechanistic studies of thiol-addition to the electrophilic warhead derivatives N-phenylacrylamide (NPA), N-acryloylpiperidine (AcrPip), and N-phenylchloroacetamide (NPC). By reacting these warhead derivatives with thiol nucleophiles having various pKa values, we were able to construct Brønsted-type plots, resulting in shallow positive βNucRS- values for NPA, AcrPip and NPC (βNucRS- = 0.07 ± 0.04, 0.11 ± 0.03, and 0.21 ± 0.07, respectively), meaning that these electrophiles are relatively insensitive to thiolate nucleophilicity. However, while the trend in their reactivity across thiolate nucleophilicity is similar, their intrinsic reactivity was found to be vastly different. In conjunction with the Brønsted-type plot, temperature, ionic strength, and kinetic isotope effects were studied to afford information about the rate-limiting transition state and elucidate the mechanism of thiol-addition. NPA and AcrPip were found to undergo very similar thiol-additions, consistent with the microscopic reverse of the E1cbrev elimination, whereas NPC follows an SN2 type addition, consistent with the intuitive mechanism of addition to a haloacetamide.
239

Effect of Estradiol on xc- in Human Breast Cancer Cells

Ellis, Jillian L. January 2012 (has links)
No description available.
240

Effects of Butylparaben Exposure on Pancreatic Development in Zebrafish (Danio rerio) Embryos

Brown, Sarah E 07 November 2016 (has links)
Butylparaben (Butyl p-hydroxybenzoic acid) is a widely used cosmetic and pharmaceutical preservative that has been recently shown to induce oxidative stress and have endocrine disrupting effects in rodents, and promote adipocyte conversion of human adipose cells. Embryonic development is extremely sensitive to oxidative stress due to changes in cell growth, development and differentiation that occur during this life stage. Fluctuations in redox potentials play critical roles in normal embryonic development by guiding these cell signaling, cell-fate decisions and apoptosis. The most prevalent endogenous antioxidant that defends against oxidative stress is glutathione (GSH), which scavenges reactive oxygen species. The low antioxidant capacity of pancreatic beta cells suggests that they are sensitive target tissues of oxidative stress; this has yet to be investigated during embryonic development. Here, we aim to 1) determine whether embryonic exposure to butylparaben prompts structural and functional changes in the developing endocrine pancreas and 2) determine whether oxidative stress may be involved. Transgenic insulin-GFP zebrafish embryos were treated daily with 250, 500, 1,000 and 3,000 nM butylparaben starting at 3 hours post fertilization (hpf). Pancreatic islet and whole embryo morphological development were examined daily until 7 days post fertilization (dpf). Redox potentials were measured at 24 and 28 hpf using HPLC. Area of the pancreatic islet increased over time with increasing butylparaben exposure in a dose-dependent manner by as much as a 55% increase in islet area at 3 dpf when compared to controls. Butylparaben concentrations of 500 and 1,000 nM increased GSH by 10 and 40%, respectively, and decreased oxidized glutathione disulfide by 37 and 59%. GSH redox potentials were only significant in embryos collected at 28 hpf and became more reduced with 500 and 1,000 nM butylparaben exposure, decreasing redox potentials by 7 and 18 mV, respectively. Cysteine redox potentials also became more reduced, decreasing by 17 and 28 mV. Our data show that butylparaben-induced redox potential disruptions that may be responsible for the effects on pancreatic islet structure and function, but further studies are needed to determine how and if that directly affects pancreas development.

Page generated in 0.0688 seconds