• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 181
  • 43
  • 30
  • 12
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • Tagged with
  • 734
  • 171
  • 169
  • 160
  • 145
  • 112
  • 95
  • 80
  • 56
  • 56
  • 54
  • 53
  • 49
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Redesign of Alpha Class Glutathione Transferases to Study Their Catalytic Properties

Nilsson, Lisa O January 2001 (has links)
A number of active site mutants of human Alpha class glutathione transferase A1-1 (hGST A1-1) were made and characterized to determine the structural determinants for alkenal activity. The choice of mutations was based on primary structure alignments of hGST A1-1 and the Alpha class enzyme with the highest alkenal activity, hGST A4-4, from three different species and crystal structure comparisons between the human enzymes. The result was an enzyme with a 3000-fold change in substrate specificity for nonenal over 1-chloro-2,4-dinitrobenzene (CDNB). The C-terminus of the Alpha class enzymes is an α-helix that folds over the active site upon substrate binding. The rate-determining step is product release, which is influenced by the movements of the C-terminus, thereby opening the active site. Phenylalanine 220, near the end of the C-terminus, forms an aromatic cluster with tyrosine 9 and phenylalanine 10, positioning the β-carbon of the cysteinyl moiety of glutathione. The effects of phenylalanine 220 mutations on the mobility of the C-terminus were studied by the viscosity dependence of kcat and kcat/Km with glutathione and CDNB as the varied substrates. The compatibility of slightly different subunit interfaces within the Alpha class has been studied by heterodimerization between monomers from hGST A1-1 and hGST A4-4. The heterodimer was temperature sensitive, and rehybridized into homodimers at 40 ˚C. The heterodimers did not show strictly additive activities with alkenals and CDNB. This result combined with further studies indicates that there are factors at the subunit interface influencing the catalytic properties of hGST A1-1.
272

Engineering of de novo pathways for biosynthesis of glutathione analogues in Escherichia coli

Veeravalli, Karthik 15 June 2011 (has links)
The low molecular weight (L.M.W.) thiol redox couple formed by γ-L-glutamyl-L-cysteinyl glycine, also called glutathione (reduced and oxidized), is present in most eukaryotes and a few species of bacteria. Glutathione plays a role in numerous cellular processes by providing a means of shuttling electrons to different enzymatic systems. As a result, thiol-dependent redox metabolic processes are highly coupled. Due to tight coupling of redox reactions, it is difficult to understand how changes in the concentration of glutathione would affect a specific glutathione-dependent process. Interestingly, only a small subset of bacteria encode the canonical enzyme for the biosynthesis of glutathione, namely γ-glutamyl cysteine synthetase (gshA gene product). The mechanisms by which glutathione-dependent processes are carried out in bacteria which do not have the genes for biosynthesis of glutathione or other L.M.W. thiols is not well understood. A genetic selection to restore a glutathione-dependent phenotype in E. coli, lacking the gene involved in first step of glutathione biosynthesis (gshA), was used to address how bacteria lacking gshA might substitute for glutathione. Genetic and biochemical analyses of the E. coli mutants isolated in the selection revealed a de novo pathway for biosynthesis of γ-glutamyl cysteine, the product formed normally by GshA. Additionally we found that the unnatural analogue of glutathione, γ-glutamyl homocysteine could also be formed by this pathway. Bioinformatic analysis suggested that bacteria lacking gshA may use these de novo pathways for biosynthesis of γ-glutamyl cysteine or γ-glutamyl homocysteine, which could serve as potential substitutes for glutathione. The engineering of de novo biosynthetic pathways for γ-glutamyl cysteine and γ-glutamyl homocysteine provided us a strategy for engineering a pathway for biosynthesis of another unnatural analogue of glutathione, β-aspartyl cysteine. Both γ-glutamyl homocysteine and β-aspartyl cysteine could potentially be used as orthologus redox couples in E. coli operating in parallel to glutathione to shuttle electrons to specific pathways which may thus be decoupled from glutathione availability. Glutathione-dependent enzymes that can use orthologous redox couples instead are biochemically isolated from network of other redox reactions in the cell and could be used to direct metabolic fluxes to specific pathways with high efficiencies. Towards this end, we show that glutathione transferase, a glutathione-dependent enzyme, can be engineered to use analogous thiols like γ-glutamyl cysteine as cofactors. / text
273

Estudo do processo de S-glutationação protéica no \"BURST\" respiratório de leucócitos: modulação pela lactona sesquiterpênica licnofolido / Study process S-glutationação protein in \"Burst\" respiratory leukocyte: modulation by sesquiterpene lactone licnofolido

Maísa Ribeiro Pereira Lima Brigagão 30 September 2004 (has links)
Foi estudado o efeito da lactona sesquiterpênica licnofolido sobre o \"burst\" respiratório de leucócitos polimorfonucleares inflamatórios (PMN) estimulados por forbol (PMA), pelo peptídeo quimiotático fMLP ou zimozan opsonizado (OZ). O licnofolido inibiu de forma dose-dependente a liberação de O2•- pelos PMN, sem alteração do período \"Iag\" do complexo NADPH. oxidase. O efeito foi mais acentuado quando os PMN foram estimulados diretamente pela via de proteína quinase C. A adição de ditiotreitol ou glutationa reduzida (GSH) às suspensões celulares antes da incubação com licnofolido preveniu parcialmente o efeito inibitório. O tratamento dos PMN com a lactona determinou uma queda drástica dos níveis celulares de GSH livre, sem incremento de glutationa oxidada (GSSG). A reação direta entre GSH e licnofolido foi confirmada com a detecção de um aduto glutationil-licnofolido através de identificação por espectrometria de massa (ESI-MS/MS). A S-tiolação protéica induzida pelo PMA foi reduzida em PMN tratados com Iicnofo/ido, como detectado através de determinação de incorporação de [35S], sendo que 80% desses tióis foram identificados como GSH. Uma série de proteínas S-glutationadas foi detectada através de autoradiografias, sendo que aquelas correspondentes a 38 e 24 kDa tiveram essa modificação póstraducional suprimida pelo tratamento com dose de licnofolido capaz de suprimir o \"burst\" respiratório dos PMN. Estes resultados indicam que a depleção celular de GSH causada pelo licnofolido impede a sustentação do \"burst\" respiratório pelos PMN, em correlação direta com a diminuição de S-glutationação protéica. / An investigation was made into the action of the sesquiterpene lactone lychnopholide on the respiratory burst of inflammatory polymorphonuclear leukocytes. Lychnopholide determined concentration-related inhibition of the generation of phorbol 12-myristate 13-acetate-, chemotatic peptide-, and opsonized zymozan-induced superoxide anion with no effect on the lag time of the assembly of the NADPH oxidase complex, such action was greater on the protein kinase C pathway that on both membrane receptor dependent stimuli via. Subsequent additions of D-glucose, Ca2+, Mg2+, dithiothreitol ar reduced glutathione (GSH) did not reverse the inhibitory action. The addition of both thiols prior to the lychnopholide treatment partially hindered the inhibition rate. The endogenous level of GSH in leukocytes was drastically depleted under the lychnopholide treatment, without corresponding increases occurring in the oxidized form (GSSG). A direct reaction between glutathione and lychnopholide was confirmed from a glutathionyl-lychnopholide adduct detected by electrospray mass spectrometry analysis and identified by tandem mass analysis in cellular extracts. Protein S-thiolation induced by PMA stimulation was decreased in lactone-treated PMN as detected by [35S] scintillation count, which indicated that about 80% of the thiols were glutathione. A subset of S-glutathionylated proteins was identified through gel electrophoresis, which revealed that the modification of the phorbol-triggered protein sulfhydryl in the protein bands corresponding to 38 and 24 kDa was precluded by the lychnopholide treatment correlated with respiratory burst inhibition. These results show that GSH depletion determined by lychnopholide treatment renders PMN to sustain respiratory burst, whose action is proportional to protein S-glutahionylation decrease.
274

Modificações morfológicas e metabólicas em gramínea e leguminosa forrageiras tropicais relativas ao suprimento de enxofre / Metabolic and morphological changes in grass and legume tropical forages related to sulfur supply

Fábiana Schmidt 12 December 2012 (has links)
O enxofre é um dos elementos essenciais para as plantas e as exigências nutricionais nesse nutriente variam com a espécie e a taxa de crescimento das plantas. Com o objetivo geral de avaliar o efeito da nutrição em enxofre no crescimento e no metabolismo do capimtanzânia (Panicum maximum cv. Tanzânia) e do estilosante (Stylosanthes guianensis cv. Mineirão) desenvolveu-se a presente pesquisa com os objetivos específicos de avaliar os efeitos do fornecimento de enxofre em: i) modificações morfológicas, produtivas e nutricionais ocorridas na parte aérea e nas raízes; ii) metabolismo do nitrogênio e as consequentes alterações na composição e concentrações de aminoácidos; iii) concentrações de enxofre total, enxofre-sulfato e glutationa e na atividade das enzimas glutationa redutase e glutationa sulfo-transferase nas folhas recém-expandidas e raízes; iv) crescimento, metabolismo da glutationa e atividade das enzimas envolvidas no ciclo ascorbato-glutationa e v) absorção de sulfato e a expressão de genes de transportadores de sulfato. Os experimentos foram conduzidos em casa de vegetação e camara de crescimento, empregando-se soluções nutritivas. As doses de enxofre aplicadas foram ajustadas de modo a permitir nutrição baixa, intermediária e alta em enxofre para cada espécie. O enxofre afetou diretamente na emissão de folhas e de perfilhos, área foliar, comprimento e superfície radicular do capim-tanzânia e do estilosante Mineirão, aumentando a produção de massa seca da parte aérea e das raízes. A baixa disponibilidade de enxofre ocasionou o desequilíbrio nutricional com o nitrogênio nas plantas, evidenciado por alta relação nitrogênio:enxofre e altas concentrações de nitrato e aminoácidos livres no tecido vegetal. Sob limitação de enxofre, o capim apresentou predomínio de asparagina na composição aminoacídica, enquanto no estilosante ocorreu a predominância de arginina. A aplicação de enxofre aumentou as concentrações de enxofre total, enxofre-sulfato e glutationa nas folhas diagnósticas e raízes para ambas as espécies forrageiras. As plantas crescidas sob limitação de enxofre apresentaram alta atividade da enzima glutationa redutase visando regenerar a glutationa reduzida, que atua protegendo as células contra danos oxidativos decorrentes do estresse da deficiência nutricional. O fornecimento de enxofre aumentou a atividade da glutationa sulfo-transferase incrementando a capacidade do vegetal de suportar estresses ambientais. A baixa disponibilidade de enxofre induziu o aumento da atividade de enzimas antioxidantes que atuam na regeneração da glutationa e do ascorbato na forma reduzida. As plantas crescidas em baixa disponibilidade de enxofre apresentaram aumento da concentração de glutationa e maior alocação desse composto nas raízes. A distribuição de glutationa das folhas para as raízes em condição de limitação de enxofre regula a absorção de sulfato no capim e no estilosante de modo diferenciado. Para o capim com alta concentração de glutationa nas raízes decresce o influxo total de 34S, enquanto para o estilosante não ocasiona a redução da absorção de sulfato. / Sulfur is an essential element required by plants and the nutritional requirements in this nutrient vary according to species and plant growth rate. This research had the main objective of evaluating the effect of sulfur nutrition on growth and metabolism of Guinea grass (Panicum maximum cv. Tanzânia) and stylo (Stylosanthes guianensis cv. Mineirão) and was developed with the specific objectives to determine the effects on i) morphological, productive and nutritional changes in plant shoots and roots, ii) nitrogen metabolism and the changes in the composition and concentrations of amino acids, iii) concentrations of total sulfur, sulfur-sulfate and glutathione and the activity of the enzymes glutathione reductase and glutathione sulfo-transferase in recently expanded leaves and roots, iv) growth, glutathione metabolism and activity of enzymes involved in ascorbate-glutathione cycle and v) sulfate uptake and expression of sulfur transporters genes. The experiments were carried out in greenhouse and growth chamber, by using nutrient solutions. Sulfur supply were adjusted to low, intermediate and high S nutrition for each species. Sulfur supply influences the emission of leaves, tillering, leaf area, root length and surface of Guinea grass and stylo increasing production of dry mass of aboveground and roots. Sulfur limitation alters the distribution of photosynthates between aboveground and roots of Guinea grass and stylo providing reduction in dry matter production of roots. The plants of Guinea grass increase root surface as a mechanism for adaptation to limited S in the culture medium. The relative chlorophyll index (RCI) in the recently expanded leaves relates to the production of dry mass of aboveground and can be used to assess S nutritional status in Guinea grass and stylo. The application of S proves necessary to increase production of dry mass in Guinea grass and stylo. Low S availability caused nutritional imbalance with N in Guinea grass and stylo plants, as shown by a high N:S ratio and high concentrations of N-nitrate and free amino acids in plant tissues. Among amino acids, asparagine predominated in S-limited guineagrass and arginine in Slimited stylo. Increased S supply regulates N:S ratio at values close to 20:1, which provides N and S concentrations that are more suitable for protein synthesis and forage production in plants of both species. Adding S increased concentrations of total S, S-sulfate, and glutathione in diagnostic leaves and roots of both species collected at the two harvests. Plants grown under S limitation showed high levels of GR activity, related to the regeneration of GSH, which acts to protect cells against oxidative damage caused by the stress of nutritional deficiency. S supply increased GST activity, and consequently plants\' capacity to withstand environmental stresses. Low S availability increased activity of the antioxidant enzymes that act in the regeneration of GSH and AsA. Plants grown with low S availability showed higher concentration of glutathione and greater allocation of glutathione to roots. For Guinea grass, high glutathione concentrations in roots decrease the 34S uptake. For stylo not cause reduction of 34S uptake.
275

Untersuchungen zu Glutathion-sensitiven Farbstoffen in der Meerschweinchen-Retina

Halfwassen, Kathrin 15 May 2012 (has links)
Die Glutathionverhältnisse und -verschiebungen zwischen Gliazellen und Ganglienzellen vor und nach oxidativem Stress wurden erstmals im lebenden Zellverband, ex vivo, untersucht. Die Untersuchungen erfolgten an akut isoliertem Retinagewebe vom Meerschweinchen, von welchem Bilder am Laser scanning microscope (LSM) erstellt wurden. Über die Anwendung des in vivo-Fluoreszenzfarbstoffes CellTracker Green wurde dabei dessen Spezifität für Glutathion überprüft und bestätigt.
276

Pesticide Mixtures Induce Immunotoxicity: Potentiation of Apoptosis and Oxidative Stress

Rabideau, Christine L. 16 August 2001 (has links)
The three insecticides of interest were lindane (an organochlorine), malathion (an organophosphate) and piperonyl butoxide (PBO; a synergist). Based on minimum cytotoxicity (> LC25), the following concentrations were chosen for the pesticide mixture studies: 70μM lindane (Lind), 50μM malathion (Mal) and 55μM PBO. In the AlamarBlue cytotoxicity assay, individual pesticide and mixtures of malathion/PBO (MP) and malathion/lindane (ML) prompted cytotoxicity with varying intensities (Mal 18.8%, Lind 20.4%, PBO 23.5%, ML 53.6% and MP 64.9%). Cytopathological analysis revealed apoptotic features in treated cells and the DNA Ladder Assay confirmed the presence of DNA fragments. The specific mode of cell death was examined via the 7-aminoactinomycin D (7-AAD) Staining Assay. Apoptosis was detected in each treatment (Mal 6.5%, Lind 12.0%, PBO 13.2%, ML 19.3% and MP 23.4%). Furthermore, 7-AAD staining in combination with fluorescent-labeled monoclonal antibodies, PE-CD45RB/220 and FITC-CD90, was performed. B-cells were more susceptible to Mal and PBO treatments than were T-cells. The pro-oxidant activity of the pesticides was monitored via the Dichlorofluorescin Diacetate assay. Exposure to pesticides for 15 minutes increased H2O2 production above the controls, Mal 21.1%; Lind 10.8%; PBO 25.9%; ML 26.8%; MP 37.8%. The activities of antioxidant enzymes, glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were altered by these treatments. GR was significantly reduced for the pesticide mixtures only (control: 51.7; Mal: 48.2; Lind: 50; PBO: 52.3; ML: 40.5; MP: 42 Units/mg). GSH-Px activity was severely reduced for all the pesticide treatments (control: 44.9; Mal: 30.2; Lind: 30.6; PBO: 32.4; ML: 21.1; MP: 21.1 Units/mg). These results indicate that exposure to these pesticide and pesticide mixtures induces apoptosis and oxidative stress. / Master of Science
277

Impact of simultaneous stimulation of 5-lipoxygenase and myeloperoxidase in human neutrophils

Zschaler, Josefin, Arnold, Jürgen 27 April 2016 (has links) (PDF)
Human neutrophil 5-lipoxygenase (5-LOX) oxidizes arachidonic acid (AA) to 5S-hydro(pero)xy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-H(p)ETE) and leukotriene (LT)A4, which is further converted to the chemoattractant LTB4. These cells contain also the heme enzyme myeloperoxidase (MPO) producing several potent oxidants such as hypochlorous acid (HOCl). Previously, it was shown that MPO-metabolites influence 5-LOX product formation. Here, we addressed the question, whether a simultaneous activation of MPO and 5-LOX in neutrophils results in comparable changes of 5-LOX activity. Human neutrophils were stimulated with H2O2 or phorbol 12-myristate 13-acetate (PMA) for MPO activation and subsequently treated with calcium ionophore A23187 inducing 5-LOX product formation on endogenous AA. Special attention was drawn to neutrophil vitality, formation of MPO-derived metabolites and redox status. The pre-stimulation with H2O2 resulted in a concentration-dependent increase in the ratio of 5-HETE to the sum of LTB4 + 6-trans-LTB4 in consequence of MPO activation. Thereby no impairment of cell vitality and only a slightly reduction of total glutathione level was observed. An influence of MPO on 5-LOX product formation could be suggested using an MPO inhibitor. In contrast, the pre-stimulation with PMA resulted in different changes of 5-LOX product formation leading to a reduced amount of 5-HETE unaffected by MPO inhibition. Furthermore, impaired cell vitality and diminished redox status was detected after PMA stimulation. Nevertheless, a MPO-induced diminution of LTB4 was obvious. Further work is necessary to define the type of 5-LOX modification and investigate the effect of physiological MPO activators.
278

Superoxide dismutase : radiobiological significance : occurrence in human tissues, tumours and tumour cell-lines

Westman, Gunnar January 1983 (has links)
<p>Diss. (sammanfattning) Umeå : Umeå universitet, 1983, härtill 5 uppsatser</p> / digitalisering@umu
279

THE INFLUENCE OF SELENIUM STATUS ON IMMUNE FUNCTION AND ANTIOXIDANT STATUS IN THE HORSE

Brummer, Mieke 01 January 2012 (has links)
Selenium (Se) has received a lot of attention for its antioxidant and immune modulating properties. Yet, comparably few studies have focused on the horse. Therefore the objectives of this research were to evaluate the influences of Se status on immune function and antioxidant defense in horses. Twenty eight horses were allocated to one of 4 dietary Se treatments: low (LS), adequate (AS), high organic (SP) and high inorganic (SS). First, horses assigned to LS, SP and SS were depleted of Se and received a low Se diet (0.07 ppm Se) for 35 wk, while AS received an adequate Se diet (0.14 ppm Se). During week 28 to 35 immune function was evaluated using a vaccine challenge with keyhole limpet hemocyanin (KLH) and equine influenza as antigens. Then, a 29 wk repletion phase followed. The LS and AS received the same diets described above while SP received an organic Se supplemented diet (0.3 ppm; Sel-Plex, Alltech, Nicholasville, KY) and SS an inorganic Se supplemented diet (0.3 ppm; sodium selenite). Immune function was assessed using a vaccine challenge with ovalbumin (OVA) and equine influenza as antigens during week 22 to 29. Samples collected throughout the depletion and repletion phases were used to assess change in Se status, antioxidant status and oxidative stress. Finally, a mild exercise test served to assess exercise induced oxidative stress. The experimental model responded as hypothesized, evaluated by blood Se and glutathione peroxidase (GPx) activity. Upon vaccination with KLH, antibody response was faster in AS than LS. Antigen specific mRNA expression of T-bet was also higher for AS than LS. Following OVA vaccination humoral and cell-mediated vaccination responses were similar across treatments. However, non-specific stimulation of peripheral blood mononuclear cells indicated suppressed mRNA expression of selected cytokines for LS compared to AS, SP and SS. Antioxidant capacity and oxidative stress were unaffected by change in Se status. A difference in GPx response post exercise was also noted between SP and SS. Low Se status impaired some measures of immune function. Supplementation at 0.3 ppm may benefit horses as indicated by higher GPx activity in idle and exercised horses.
280

PHYSIOLOGICAL AND TOXICOLOGICAL ROLES OF ABC TRANSPORTERS IN CELLULAR EFFLUX OF SUBSTRATES

Coy, Donna J 01 January 2012 (has links)
ATP-binding cassette (ABC) transporters are transmembrane proteins that transport a wide variety of substrates across intra and extra-cellular membranes. A few examples of endo and xenobiotic substrates are metabolic products, lipids, sterols, and drugs. An important function of ABC transporters involved in export is to prevent intracellular the buildup of toxic products. Several ABC transporters have also been associated with drug resistance upon treatment with chemotherapeutic agents. P-glycoprotein (P-GP) and the multidrug resistant (MRP) transporters of the ABC C family are examples of transporters that confer chemo-resistance. We have studied two unique roles of ABC transporters in the liver and the heart. In the liver, maintenance of bile secretion is important during lactation to ensure proper absorption of nutrients for the offspring. Three main ABC transporters are involved in this process: ABCB11 (transports bile acids), ABCB4 (transporters phospholipids), and ABCG5/ABCG8 (transports cholesterol). In the rat, expression of ABCB11 remains the same as the size of the bile acid pool increases. However, the expression of ABCG5/ABCG8 is abolished, preventing excessive export and loss of cholesterol from the liver. The regulation of these transporters during lactation maintains the production of bile acids from cholesterol by decreasing export while preventing toxicity from bile acids by maintaining bile flow. Another protective role of ABC transporters is seen in oxidative stress-induced toxicity of cardiac tissue following treatment with Doxorubicin (DOX), a drug used in cancer treatment. Multidrug resistance protein 1 (Mrp1) can transport toxic products by conjugation with sulfate, glutathione (GSH) or glucuronide. In Mrp1-/- mice, DOX causes advanced cell damage through intracellular edema and increased apoptotic nuclei. However, P-glycoprotein expression increases upon DOX treatment, potentially compensating for the loss of Mrp1. Mrp1 can also transport GSH, GSH disulfide (GSSG), and products of oxidation, like GSH conjugates. In the absence of Mrp1, GSH levels are increased in the heart, providing protection against oxidative stress. Both of these examples in liver and heart show the diversity of ABC transporters and the role they play in preventing cell toxicity. These studies also provide insight into ways to prevent cell toxicity through manipulation of ABC transport proteins.

Page generated in 0.053 seconds