• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 181
  • 43
  • 30
  • 12
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • Tagged with
  • 734
  • 171
  • 169
  • 160
  • 145
  • 112
  • 95
  • 80
  • 56
  • 56
  • 54
  • 53
  • 49
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Evolutionary Analysis and Posttranslational Chemical Modifications in Protein Redesign : A Study on Mu Class Glutathione Transferases

Ivarsson, Ylva January 2006 (has links)
<p>Glutathione transferases (GSTs) constitute a family of multifarious enzymes that conjugate glutathione (GSH) with a wide range of electrophiles. GSTs are grouped into different classes based on protein sequence similarities. Despite high sequence identities between GSTs of the same class they often display different substrate specificites. Human GST M1-1 is efficiently catalyzing the conjugation of GSH and various epoxide substrates, whereas the 84% sequence-identical GST M2-2 has low activities with the same substrates.</p><p>Evolutionary rate analysis was used to identify hypervariable amino acid positions among GST Mu class sequences. A Thr to Ser conversion of the variable residue 210 in GST M2-2 elicited a drastic increase in catalytic activity with epoxides, which is the characteristic activity of GST M1-1. This provides support for the usefulness of evolutionary analysis in identifying functionally important residues, although the additional mutations of two other variable residues did not confer any noteworthy changes in activity.</p><p>To further investigate the functional importance of residue T210 in GST M2-2 it was replaced by all other commonly occurring amino acids. The replacements caused marked changes in substrate specificity, stability, and expressivity, indicating how functionalities of a duplicated Mu class GST may easily be altered by point mutations. </p><p>The stereo- and regioselectivity in epoxide-conjugation catalyzed by GSTs M1-1 and M2-2 was investigated. The results show that a serine in position 210 is beneficial for high enantioselectivity with trans-stilbene oxide. However, an alanine in position 210 is more favorable for stereo- and regioselectivity with the smaller epoxide substrate styrene-7,8-oxide. </p><p>The low enantioselectivity of GST M1-1 was improved 10- and 9- fold with styrene-7,8-oxide and 1-phenylpropylene oxide, respectively, through different combination of site-specific mutations and posttranslational chemical modifications. The approach can be employed in more extensive screening experiments where a large variety of modifications easily can be tested.</p>
312

Role of Multiple Glutathione Transferases in Bioactivation of Thiopurine Prodrugs : Studies of Human Soluble Glutathione Transferases from Alpha, Kappa, Mu, Omega, Pi, Theta, and Zeta Classes

Eklund, Birgitta I. January 2006 (has links)
<p>A screening method was developed for identification of catalytically active enzymes in combinatorial cDNA libraries of mutated glutathione transferase (GST) derivatives expressed in <i>E. coli</i>. The method is based on spraying monochlorobimane (MCB) directly over bacterial colonies growing on agar. The substrate MCB become fluorescent under UV light, when the bacterial colony contains active GSTs catalyzing the conjugation with endogenous glutathione. Eleven out of twelve GSTs investigated where active with MCB. This method can be used to screen libraries generated from most cytosolic GSTs in the search for proteins with altered functions and structures. Azathioprine (Aza), a thiopurine that has been used clinically for 40 years was investigated with 14 GSTs. Three enzymes showed prominent catalytic activities with Aza and all of them are highly expressed in the liver. We estimated the contribution of the three enzymes GSTs A1-1, A2-2 and M1-1 bioactivation of Aza in the liver and concluded that it was about 2 orders of magnitude more effective than the uncatalyzed reaction. GST bioactivation of Aza could clarify aspects of idiosyncratic reactions observed in some individuals. Two other thiopurine prodrugs, cis-acetylvinylthiopurine (cAVTP) and trans-acetylvinylthioguanine (tAVTG), were investigated with the same 14 GSTs. The results displayed diverse catalytic activities. A mechanism of consecutive reactions was proposed. The studies contribute to knowledge under what conditions the drug should optimally be administered. A study of the same prodrugs with several mutants from the Mu class characterized by a point mutation of a hypervarible residue. We conclude that the effects of the mutations were qualitatively parallel for cAVTP and tAVTG, but they vary significantly in magnitude; steric hindrance may interfere with transition-state stabilization. From the evolutionary perspective the data show that a point mutation can alternatively enhance or attenuate the activity with a particular substrate and illustrate the functional plasticity of GSTs.</p>
313

Elevated ceramide levels contribute to the age-associated decline in vascular endothelial nitric oxide : pharmacologic administration of lipoic acid partially restores function

Smith, Anthony R. 11 February 2005 (has links)
The vascular endothelium is a single cell layer that lines the lumen of the entire vasculature. It is the site of synthesis of nitric oxide (NO), a vasodilatory compound synthesized by endothelial nitric oxide synthase (eNOS). NO causes intracellular calcium sequestration of the vascular smooth muscle cells, relaxing and dilating the arteries. Age profoundly affects endothelium-dependent vasodilation, leading to specific losses of NO. We sought to determine what causes the age-specific loss of endothelial NO. This was accomplished by investigating whether there are differences in markers of eNOS post-translational regulation elements in the aortic endothelium of young (2-4 months; corresponding to an adolescent human adult) and old (32-34 months; corresponding to a 65-75 year-old human). F 344 x Brown Norway hybrid rats. Results show that maximal eNOS activity significantly declines with age (n=4;p���0.05) though there was no change in eNOS protein levels in the aortic endothelium. Endothelial NOS exists in two distinct subcellular fractions. No alterations were detected in the soluble, inactive fraction while significantly less eNOS protein is detected in the active, plasma membrane fraction of the endothelium (n=4;p���0.02). Endothelial NOS activation is also controlled by its phosphorylation state. In this work we demonstrate that free ceramides and ceramide-activated phosphatase (PP2A) activity are significantly elevated with age in the endothelium and correlate with specific alterations in eNOS phosphorylation status consistent with its inactivation. These changes were concomittent with an age-associated decline in endothelial glutathione (GSH) and increased sphingomyelinase activity which liberates ceramides from membrane sphingolipids. In previously published reports we demonstrated that the dithiol compound R-��-lipoic acid (LA) increased maximal NO synthesis in cultured endothelial cells and that LA improved age-associated loss of eNOS stimulatory phosphorylation in rats. Therefore, we administered pharmacologic doses of LA (40 mg/kg, i.p. over 24 h) to old rats to determine whether it restored NO-dependent vasomotor function. Results show that LA significantly increased endothelial GSH (p���0.05 compared to saline controls), decreased sphingomyelinase activity and reversed the age-related increase in ceramide (p���0.01) in old animals. Finally, LA significantly improved endothelium-dependent vasodilation, suggesting that it might be a good therapeutic agent for age-related vascular endothelial dysfunction. / Graduation date: 2005
314

Evolutionary Analysis and Posttranslational Chemical Modifications in Protein Redesign : A Study on Mu Class Glutathione Transferases

Ivarsson, Ylva January 2006 (has links)
Glutathione transferases (GSTs) constitute a family of multifarious enzymes that conjugate glutathione (GSH) with a wide range of electrophiles. GSTs are grouped into different classes based on protein sequence similarities. Despite high sequence identities between GSTs of the same class they often display different substrate specificites. Human GST M1-1 is efficiently catalyzing the conjugation of GSH and various epoxide substrates, whereas the 84% sequence-identical GST M2-2 has low activities with the same substrates. Evolutionary rate analysis was used to identify hypervariable amino acid positions among GST Mu class sequences. A Thr to Ser conversion of the variable residue 210 in GST M2-2 elicited a drastic increase in catalytic activity with epoxides, which is the characteristic activity of GST M1-1. This provides support for the usefulness of evolutionary analysis in identifying functionally important residues, although the additional mutations of two other variable residues did not confer any noteworthy changes in activity. To further investigate the functional importance of residue T210 in GST M2-2 it was replaced by all other commonly occurring amino acids. The replacements caused marked changes in substrate specificity, stability, and expressivity, indicating how functionalities of a duplicated Mu class GST may easily be altered by point mutations. The stereo- and regioselectivity in epoxide-conjugation catalyzed by GSTs M1-1 and M2-2 was investigated. The results show that a serine in position 210 is beneficial for high enantioselectivity with trans-stilbene oxide. However, an alanine in position 210 is more favorable for stereo- and regioselectivity with the smaller epoxide substrate styrene-7,8-oxide. The low enantioselectivity of GST M1-1 was improved 10- and 9- fold with styrene-7,8-oxide and 1-phenylpropylene oxide, respectively, through different combination of site-specific mutations and posttranslational chemical modifications. The approach can be employed in more extensive screening experiments where a large variety of modifications easily can be tested.
315

Directed Evolution of Glutathione Transferases Guided by Multivariate Data Analysis

Kurtovic, Sanela January 2008 (has links)
Evolution of enzymes with novel functional properties has gained much attention in recent years. Naturally evolved enzymes are adapted to work in living cells under physiological conditions, circumstances that are not always available for industrial processes calling for novel and better catalysts. Furthermore, altering enzyme function also affords insight into how enzymes work and how natural evolution operates. Previous investigations have explored catalytic properties in the directed evolution of mutant libraries with high sequence variation. Before this study was initiated, functional analysis of mutant libraries was, to a large extent, restricted to uni- or bivariate methods. Consequently, there was a need to apply multivariate data analysis (MVA) techniques in this context. Directed evolution was approached by DNA shuffling of glutathione transferases (GSTs) in this thesis. GSTs are multifarious enzymes that have detoxication of both exo- and endogenous compounds as their primary function. They catalyze the nucleophilic attack by the tripeptide glutathione on many different electrophilic substrates. Several multivariate analysis tools, e.g. principal component (PC), hierarchical cluster, and K-means cluster analyses, were applied to large mutant libraries assayed with a battery of GST substrates. By this approach, evolvable units (quasi-species) fit for further evolution were identified. It was clear that different substrates undergoing different kinds of chemical transformation can group together in a multi-dimensional substrate-activity space, thus being responsible for a certain quasi-species cluster. Furthermore, the importance of the chemical environment, or substrate matrix, in enzyme evolution was recognized. Diverging substrate selectivity profiles among homologous enzymes acting on substrates performing the same kind of chemistry were identified by MVA. Important structure-function activity relationships with the prodrug azathioprine were elucidated by segment analysis of a shuffled GST mutant library. Together, these results illustrate important methods applied to molecular enzyme evolution.
316

Exploring Novel Catalytic Chalcogenide Antioxidants

Johansson, Henrik January 2010 (has links)
This thesis is concerned with the synthesis and evaluation of regenerable chalcogen containing antioxidants. Variously substituted 2,3-dihydrobenzo[b]selenophene-5-ol antioxidants were evaluated in order to gain information about structure/reactivity-relationships. Within the series explored, the most regenerable unsubstituted compound inhibited lipid peroxidation for more than 320 minutes when assayed in a two-phase lipid peroxidation model in the presence of N-acetylcysteine (NAC). α-Tocopherol which could inhibit lipid peroxidation for 90 minutes under similar conditions was therefore easily outperformed. The antioxidant activity of the parent was also documented in an aqueous environment. The best catalyst quenched/inhibited ROS production by neutrophils and PMA-stimulated macrophages more efficiently than Trolox. In addition, over a period of seven days, no disruption in proliferation for the cell lines used was observed when exposed to our synthetic compound or Trolox at a concentration of 60 µM. 3-Pyridinols substituted with alkyltelluro groups in the ortho-position were more regenerable in the two-phase model than their corresponding para-substituted analogues in the presence of NAC and also inhibited autoxidation of styrene in a catalytic fashion in homogenous phase in the presence of N-tert-butoxycarbonyl cysteine methyl ester (LipCys), a lipid-soluble analogue of NAC. The best inhibitors quenched peroxyl radicals more efficiently than α-tocopherol. They could also catalyze reduction of organic hydroperoxides in the presence of thiols and therefore mimic the action of the glutathione peroxidase enzymes. Mechanisms for the catalysis are proposed. Octylthio, octylseleno and octyltelluro analogues of butylated hydroxyanisole (BHA) were synthesized and evaluated. Among these, the tellurium compound was superior to α-tocopherol in the presence of NAC both when it comes to quenching capacity and regenerability.  Organochalcogen substituent effects in phenolic compounds were studied by using EPR, IR and computational methods.
317

Radiosensitizing glioblastoma in a rat model using l-buthionine-sr-sulfoximine (BSO)

Ataelmannan, Khalid Ali 21 April 2008
Glioblastoma multiforme (GBM) is the most aggressive and most common primary brain tumor in adults accounting for 50-60% of primary brain tumors. The prognosis for patients with GBM remains poor and treatment is mainly palliative with a mean survival time of less than one year. Radiotherapy is used extensively in the management of glioblastoma either alone or in combination with surgery and/or chemotherapy. However, this tumor is one of the most resistant tumors to radiotherapy thus limiting the benefit of this form of treatment. <p>Studies have shown that malignant tumors have a high content of glutathione an antioxidant responsible for protecting the cells against damage from free radicals (mainly superoxide, hydroxyl and hydrogen peroxide). It is well established that glutathione, by neutralizing these free radicals plays a major role in radioresistance. Glioblastoma has relatively high levels of glutathione. In this study, by reducing the glutathione content of glioblastoma in a rat model, we were able to investigate the effect of this reduction in enhancing the effect of radiotherapy as a form of treatment for glioblastoma multiforme in a rat model. <p>By injecting L-Buthionine-SR-Sulfoximine (BSO) in to the tumor tissue, the glutathione content of the tumor was reduced by about 70% of its initial value. When administered into the tumors 2 hours prior to radiotherapy the animals so treated had a significantly longer median survival time compared with animals that received radiotherapy alone.
318

Synthesis of analogues of nordihydroguaiaretic acid and their oxidative metabolism

Maloney, Katherine Ann 01 June 2010
In order to investigate the structural features responsible for the cytotoxicity of the naturally occurring lignan nordihydroguaiaretic acid, the synthesis of four structural analogues of NDGA is proposed for the purpose of studying their oxidative metabolism. One analogue in particular (1), a mono-catechol analogue, is successfully synthesized employing a double Stobbe condensation approach. Following synthesis of this compound a series of oxidation experiments is performed consisting of: incubation in rat liver microsomes with and without the trapping agent glutathione (GSH), oxidation with mushroom tyrosinase, oxidation with silver oxide, and oxidation with horseradish peroxidase. Results are analyzed via HPLC and UPLC-MS. It is found that 1 does not autoxidize at pH 7.4 as NDGA does. Two products are produced during incubation of 1 in rat liver microsomes with UPLC-ESI(-)-MS results giving m/z of 879.2 and 574.18. This is consistent with 1 plus 2 GSH and 1 plus 1 GSH respectively; confirming 1 will oxidize to an electrophilic moiety. Oxidation with mushroom tyrosinase is found to produce high levels of product two with m/z 574.2. Oxidation with horseradish peroxidase is found to produce high levels of the m/z 879.2 product. Silver Oxide produced multiple products rather than the expected one major product, but most are found to be inconsistent with the products seen during rat liver microsomal incubation, and are not pursued.
319

Radiosensitizing glioblastoma in a rat model using l-buthionine-sr-sulfoximine (BSO)

Ataelmannan, Khalid Ali 21 April 2008 (has links)
Glioblastoma multiforme (GBM) is the most aggressive and most common primary brain tumor in adults accounting for 50-60% of primary brain tumors. The prognosis for patients with GBM remains poor and treatment is mainly palliative with a mean survival time of less than one year. Radiotherapy is used extensively in the management of glioblastoma either alone or in combination with surgery and/or chemotherapy. However, this tumor is one of the most resistant tumors to radiotherapy thus limiting the benefit of this form of treatment. <p>Studies have shown that malignant tumors have a high content of glutathione an antioxidant responsible for protecting the cells against damage from free radicals (mainly superoxide, hydroxyl and hydrogen peroxide). It is well established that glutathione, by neutralizing these free radicals plays a major role in radioresistance. Glioblastoma has relatively high levels of glutathione. In this study, by reducing the glutathione content of glioblastoma in a rat model, we were able to investigate the effect of this reduction in enhancing the effect of radiotherapy as a form of treatment for glioblastoma multiforme in a rat model. <p>By injecting L-Buthionine-SR-Sulfoximine (BSO) in to the tumor tissue, the glutathione content of the tumor was reduced by about 70% of its initial value. When administered into the tumors 2 hours prior to radiotherapy the animals so treated had a significantly longer median survival time compared with animals that received radiotherapy alone.
320

Synthesis of analogues of nordihydroguaiaretic acid and their oxidative metabolism

Maloney, Katherine Ann 01 June 2010 (has links)
In order to investigate the structural features responsible for the cytotoxicity of the naturally occurring lignan nordihydroguaiaretic acid, the synthesis of four structural analogues of NDGA is proposed for the purpose of studying their oxidative metabolism. One analogue in particular (1), a mono-catechol analogue, is successfully synthesized employing a double Stobbe condensation approach. Following synthesis of this compound a series of oxidation experiments is performed consisting of: incubation in rat liver microsomes with and without the trapping agent glutathione (GSH), oxidation with mushroom tyrosinase, oxidation with silver oxide, and oxidation with horseradish peroxidase. Results are analyzed via HPLC and UPLC-MS. It is found that 1 does not autoxidize at pH 7.4 as NDGA does. Two products are produced during incubation of 1 in rat liver microsomes with UPLC-ESI(-)-MS results giving m/z of 879.2 and 574.18. This is consistent with 1 plus 2 GSH and 1 plus 1 GSH respectively; confirming 1 will oxidize to an electrophilic moiety. Oxidation with mushroom tyrosinase is found to produce high levels of product two with m/z 574.2. Oxidation with horseradish peroxidase is found to produce high levels of the m/z 879.2 product. Silver Oxide produced multiple products rather than the expected one major product, but most are found to be inconsistent with the products seen during rat liver microsomal incubation, and are not pursued.

Page generated in 0.0935 seconds