• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of simultaneous stimulation of 5-lipoxygenase and myeloperoxidase in human neutrophils

Zschaler, Josefin, Arnold, Jürgen 27 April 2016 (has links) (PDF)
Human neutrophil 5-lipoxygenase (5-LOX) oxidizes arachidonic acid (AA) to 5S-hydro(pero)xy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-H(p)ETE) and leukotriene (LT)A4, which is further converted to the chemoattractant LTB4. These cells contain also the heme enzyme myeloperoxidase (MPO) producing several potent oxidants such as hypochlorous acid (HOCl). Previously, it was shown that MPO-metabolites influence 5-LOX product formation. Here, we addressed the question, whether a simultaneous activation of MPO and 5-LOX in neutrophils results in comparable changes of 5-LOX activity. Human neutrophils were stimulated with H2O2 or phorbol 12-myristate 13-acetate (PMA) for MPO activation and subsequently treated with calcium ionophore A23187 inducing 5-LOX product formation on endogenous AA. Special attention was drawn to neutrophil vitality, formation of MPO-derived metabolites and redox status. The pre-stimulation with H2O2 resulted in a concentration-dependent increase in the ratio of 5-HETE to the sum of LTB4 + 6-trans-LTB4 in consequence of MPO activation. Thereby no impairment of cell vitality and only a slightly reduction of total glutathione level was observed. An influence of MPO on 5-LOX product formation could be suggested using an MPO inhibitor. In contrast, the pre-stimulation with PMA resulted in different changes of 5-LOX product formation leading to a reduced amount of 5-HETE unaffected by MPO inhibition. Furthermore, impaired cell vitality and diminished redox status was detected after PMA stimulation. Nevertheless, a MPO-induced diminution of LTB4 was obvious. Further work is necessary to define the type of 5-LOX modification and investigate the effect of physiological MPO activators.
2

Impact of Myeloperoxidase-derived oxidants on the product profile of human 5-Lipoxygenase

Zschaler, Josefin, Dorow, Juliane, Schöpe, Louisa, Ceglarek, Uta, Arnhold, Jürgen 23 May 2016 (has links) (PDF)
Human 5-lipoxygenase (5-LOX) oxidizes arachidonic acid to 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-HpETE) and leukotriene (LT) A4. In neutrophils, LTA4 is further converted to the potent chemoattractant LTB4. These cells also contain the heme enzyme myeloperoxidase (MPO), which produces several potent oxidants such as hypochlorous acid (HOCl), which are involved in pathogen defense and immune regulation. Here, we addressed the question whether MPO-derived oxidants are able to affect the activity of 5-LOX and the product profile of this enzyme. Human 5-LOX was incubated with increasing amounts of HOCl or HOBr. Afterward, arachidonic acid metabolites of 5-LOX were analyzed by reverse-phase high-performance liquid chromatography as well as by liquid chromatography-electrospray ionization-tandem mass spectrometry. The incubation of 5-LOX with the MPO-derived oxidants significantly changed the product profile of 5-LOX. Thereby, HOCl and HOBr increased the ratio of 5-H(p)ETE to 6-trans-LTB4 in a concentration-dependent manner. At low oxidant concentrations, there was a strong decrease in the yield of 6-trans-LTB4, whereas 5-HpETE did not change or increased. Additionally, the formation of 8-HpETE and 12-HpETE by 5-LOX rose slightly with increasing HOCl and HOBr. Comparable results were obtained with the MPO-H2O2-Cl– system when glucose oxidase and glucose were applied as a source of H2O2. This was necessary because of a strong impairment of 5-LOX activity by H2O2. In summary, MPO-derived oxidants showed a considerable impact on 5-LOX, impairing the epoxidation of 5-HpETE, whereas the hydroperoxidation of arachidonic acid was unaffected. Apparently, this was caused by an oxidative modification of critical amino acid residues of 5-LOX. Further work is necessary to assess the specific type and position of oxidation in the substrate-binding cavity of 5-LOX and to specify whether this interaction between 5-LOX and MPO-derived oxidants also takes place in stimulated neutrophils.
3

Impact of simultaneous stimulation of 5-lipoxygenase and myeloperoxidase in human neutrophils

Zschaler, Josefin, Arnold, Jürgen January 2016 (has links)
Human neutrophil 5-lipoxygenase (5-LOX) oxidizes arachidonic acid (AA) to 5S-hydro(pero)xy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-H(p)ETE) and leukotriene (LT)A4, which is further converted to the chemoattractant LTB4. These cells contain also the heme enzyme myeloperoxidase (MPO) producing several potent oxidants such as hypochlorous acid (HOCl). Previously, it was shown that MPO-metabolites influence 5-LOX product formation. Here, we addressed the question, whether a simultaneous activation of MPO and 5-LOX in neutrophils results in comparable changes of 5-LOX activity. Human neutrophils were stimulated with H2O2 or phorbol 12-myristate 13-acetate (PMA) for MPO activation and subsequently treated with calcium ionophore A23187 inducing 5-LOX product formation on endogenous AA. Special attention was drawn to neutrophil vitality, formation of MPO-derived metabolites and redox status. The pre-stimulation with H2O2 resulted in a concentration-dependent increase in the ratio of 5-HETE to the sum of LTB4 + 6-trans-LTB4 in consequence of MPO activation. Thereby no impairment of cell vitality and only a slightly reduction of total glutathione level was observed. An influence of MPO on 5-LOX product formation could be suggested using an MPO inhibitor. In contrast, the pre-stimulation with PMA resulted in different changes of 5-LOX product formation leading to a reduced amount of 5-HETE unaffected by MPO inhibition. Furthermore, impaired cell vitality and diminished redox status was detected after PMA stimulation. Nevertheless, a MPO-induced diminution of LTB4 was obvious. Further work is necessary to define the type of 5-LOX modification and investigate the effect of physiological MPO activators.
4

Impact of Myeloperoxidase-derived oxidants on the product profile of human 5-Lipoxygenase

Zschaler, Josefin, Dorow, Juliane, Schöpe, Louisa, Ceglarek, Uta, Arnhold, Jürgen January 2015 (has links)
Human 5-lipoxygenase (5-LOX) oxidizes arachidonic acid to 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-HpETE) and leukotriene (LT) A4. In neutrophils, LTA4 is further converted to the potent chemoattractant LTB4. These cells also contain the heme enzyme myeloperoxidase (MPO), which produces several potent oxidants such as hypochlorous acid (HOCl), which are involved in pathogen defense and immune regulation. Here, we addressed the question whether MPO-derived oxidants are able to affect the activity of 5-LOX and the product profile of this enzyme. Human 5-LOX was incubated with increasing amounts of HOCl or HOBr. Afterward, arachidonic acid metabolites of 5-LOX were analyzed by reverse-phase high-performance liquid chromatography as well as by liquid chromatography-electrospray ionization-tandem mass spectrometry. The incubation of 5-LOX with the MPO-derived oxidants significantly changed the product profile of 5-LOX. Thereby, HOCl and HOBr increased the ratio of 5-H(p)ETE to 6-trans-LTB4 in a concentration-dependent manner. At low oxidant concentrations, there was a strong decrease in the yield of 6-trans-LTB4, whereas 5-HpETE did not change or increased. Additionally, the formation of 8-HpETE and 12-HpETE by 5-LOX rose slightly with increasing HOCl and HOBr. Comparable results were obtained with the MPO-H2O2-Cl– system when glucose oxidase and glucose were applied as a source of H2O2. This was necessary because of a strong impairment of 5-LOX activity by H2O2. In summary, MPO-derived oxidants showed a considerable impact on 5-LOX, impairing the epoxidation of 5-HpETE, whereas the hydroperoxidation of arachidonic acid was unaffected. Apparently, this was caused by an oxidative modification of critical amino acid residues of 5-LOX. Further work is necessary to assess the specific type and position of oxidation in the substrate-binding cavity of 5-LOX and to specify whether this interaction between 5-LOX and MPO-derived oxidants also takes place in stimulated neutrophils.

Page generated in 0.0188 seconds