Spelling suggestions: "subject:"[een] HIGH CYCLE FATIGUE"" "subject:"[enn] HIGH CYCLE FATIGUE""
1 |
NUMERICAL INVESTIGATION OF THE INFLUENCE OF FRONT CAMBER ON THE STABILITY OF A COMPRESSOR AIRFOILLi, Rui 01 January 2005 (has links)
With the advent of smart materials it is becoming possible to alter the structural characteristics of turbomachine airfoils. This change in structural characteristics can include, but is not limited to, changes in the shape (morphing) of the airfoil. Through changes in the airfoil shape, aerodynamic performance can be improved. Moreover, this technique has the potential to act as a flutter suppressant. In this investigation changes in the airfoil front camber while maintaining the airfoil thickness distribution are made to increase airfoil stability. The airfoil section is representative of current low aspect ratio fan blade tip sections. To assess the influence of the change in airfoil shape on stability the work-per-cycle was evaluated for torsion mode oscillations around the mid-chord at an inlet Mach number of 0.5 with an interblade phase angle of 180 degree Cchordal incidence angles of both 0 degree and 10 degree, and a reduced frequency of 0.4.
|
2 |
Prediction of Inlet Distortion Transfer Through the Blade Rows in a Transonic Axial CompressorRyman, John Franklin 03 July 2003 (has links)
Inlet total pressure non-uniformities in axial flow fans and compressors can contribute to the loss of component structural integrity through high cycle fatigue (HCF) induced by the excitation of blade vibratory modes. As previous research has shown total pressure distortion to be the dominant HCF driver in aero engines [Manwaring et al, 1997], an understanding of its transfer through, and impact on, subsequent turbomachine stages and engine components is an important topic for assessment. Since current modeling techniques allow for total pressure distortion magnitudes to be directly related to blade vibratory response, the prediction of downstream distortion patterns from an upstream measurement would allow for the inference of the vibratory response of downstream blade rows to an inlet total pressure distortion.
Nonlinear Volterra theory can be used to model any periodic nonlinear system as an infinite sum of multidimensional convolution integrals. A semi-empirical model has been developed using this theory by assuming that a distortion waveform is a periodic signal that is being presented to a nonlinear system, the compressor being the system. The use of Volterra theory in nonlinear system modeling relies on the proper identification of the Volterra kernels, which make up the transfer function that defines the system's impulse response characteristics. Once the kernels of a system are properly identified, the system's response can be calculated for any arbitrary input. This model extracts these kernels from upstream and downstream total pressure distortion measurements of a transonic rotor of modern design. The resulting transfer function is then applied to predict distortion transfer at new operating points on the same rotor and compared with the measured data.
The judicious choice of distortion measurement data allows predictions of the downstream distortion content based on a measured non-uniform inlet flow at conditions different from those at which the transfer function was derived. This allows for the determination of downstream total pressure distortion that has the potential to excite blade vibratory modes that could lead to HCF under operating conditions other than those at which the data was taken, such as varying inlet distortion patterns, mass flow settings, rotational speeds, and inlet geometry.
This report presents the creation of a Volterra model in order to predict distortion transfer in axial flow fans and compressors. This model, in three variations, is applied to a variety of distortions and compressor operating conditions as measured in the ADLARF tests at the Compressor Research Facility. Predictions are compared with data from the test and final results are also compared with two previous studies conducted at Virginia Tech using the same experimental data. Using the Volterra model it is shown that, with appropriate limitations, distortion transfer can be predicted for flow conditions different from those used for calibration. The model is considered useful for both performance and HCF investigations. / Master of Science
|
3 |
HIGH CYCLE FATIGUE STUDIES OF CARBURIZED NICKEL-BASE SUPERALLOYS AND STAINLESS STEELSGe, Yindong January 2009 (has links)
No description available.
|
4 |
Surface Drying and Rehydration Does Not Affect the High Cycle Fatigue Behavior of Human Bone TissueWang, Bowen, Wang 31 August 2018 (has links)
No description available.
|
5 |
Active Flow Control For Reduction of Unsteady Stator-Rotor Interaction In a Turbofan SimulatorFeng, Jinwei 03 November 2000 (has links)
The research effort presented in this dissertation consists of employing active trailing edge blowing control to reduce the unsteady stator-rotor interaction in a turbofan simulator. Two active flow control systems with different wake sensing approaches are successfully implemented on the engine simulator.
The first flow control system utilizes Pitot probes as flow sensors. Use of Pitot probes as sensors is appropriate as a first step toward a more in depth investigation of active trailing edge blowing control. An upper performance limit in terms of wake-filling can be obtained and serves as the baseline in evaluating other control systems with indirect wake sensors. The ability of the system to achieve effective wake filling when subjected to a change in inlet flow conditions demonstrates the feasibility and advantage of active flow control. Significant tonal noise reductions in the far field are also obtained.
The second control system involves using microphones as indirect wake sensors. The significance of these acoustic sensing approaches is to provide a practical TEB approach for realistic engines implementations. Microphones are flush mounted on the inlet case to sense the tonal noise at the blade passing frequency. The first sensing approach only uses the tone magnitude while the second novel sensing approach utilizes both the tone magnitude and phase as error information. The convergence rate of the second sensing approach is comparable with that of the Pitot-probe based experiments. The acoustic results obtained from both sensing approaches agree well with those obtained using Pitot probes as sensors.
In addition to the experimental part of this research, analytical studies are also conducted on the trailing edge blowing modeling using an aeroacoustic code. An analytical model for trailing edge blowing is first proposed. This model is then introduced into the two-dimensional aeroacoustic code to investigate effect of various trailing edge blowing managements in the tonal sound generation. / Ph. D.
|
6 |
Numerical investigation of the sensitivity of forced response characteristics of bladed disks to mistuningMyhre, Mikkel January 2003 (has links)
<p>Two state of the art finite element reduction techniquespreviously validated against the direct finite element method,one based on classical modal analysis and another based oncomponent mode synthesis, are applied for efficient mistunedfree vibration and forced response analysis of several bladeddisk geometries. The methods are first applied to two testcases in order to demonstrate the differences in computationalefficiency as well as to validate the methods againstexperimental data. As previous studies have indicated, nonoticeable differences in accuracy are detected for the currentapplications, while the method based on classical modalanalysis is significantly more efficient. Experimental data(mistuned frequencies and mode shapes) available for one of thetwo test cases are compared with numerical predictions, and agood match is obtained, which adds to the previous validationof the methods (against the direct finite element method).</p><p>The influence of blade-to-blade coupling and rotation speedon the sensitivity of bladed disks to mistuning is thenstudied. A transonic fan is considered with part span shroudsand without shrouds, respectively, constituting a high and alow blade-to-blade coupling case. For both cases, computationsare performed at rest as well as at various rotation speeds.Mistuning sensitivity is modelled as the dependence ofamplitude magnification on the standard deviation of bladestiffnesses. The finite element reduction technique based onclassical modal analysis is employed for the structuralanalysis. This reduced order model is solved for sets of randomblade stiffnesses with various standard deviations, i.e. MonteCarlo simulations. In order to reduce the sample size, thestatistical data is fitted to a Weibull (type III) parametermodel. Three different parameter estimation techniques areapplied and compared. The key role of blade-to-blade coupling,as well as the ratio of mistuning to coupling, is demonstratedfor the two cases. It is observed that mistuning sensitivityvaries significantly with rotation speed for both fans due toan associated variation in blade-to-blade coupling strength.Focusing on the effect of one specific engine order on themistuned response of the first bending modes, it is observedthat the mistuning sensitivity behaviour of the fan withoutshrouds is unaffected by rotation at its resonant condition,due to insignificant changes in coupling strength at thisspeed. The fan with shrouds, on the other hand, shows asignificantly different behaviour at rest and resonant speed,due to increased coupling under rotation. Comparing the twocases at resonant rotor speeds, the fan without shrouds is lessor equally sensitive to mistuning than the fan with shrouds inthe entire range of mistuning strengths considered.</p><p>This thesisscientific contribution centres on themistuning sensitivity study, where the effects of shrouds androtation speed are quantified for realistic bladed diskgeometries. However, also the validation of two finite elementreduction techniques against experimental measurementsconstitutes an important contribution.</p>
|
7 |
Daugiaciklio nuovargio plyšių susidarymo ir plitimo sluoksniuotajame ketuje tyrimas / Investigation of high-cycle fatigue crack formation and propagation in layered cast ironPetraitis, Gediminas 20 September 2006 (has links)
The work presents the research of high-strength cast iron used for manufacturing of large grinding structures with dross layer and with non-homogeneous heat treatment volumes that remains inside during manufacturing process and subjected to high-cycle loading. The original research methodology used for investigations allowed to obtain the results of high-cycle loading. Obtained results have been used to improve the structural elements calculation methods.
|
8 |
Daugiaciklio nuovargio plyšių susidarymo ir plitimo sluoksniuotajame ketuje tyrimas / Investigation of high-cycle fatigue crack formation and propagation in layered cast ironPetraitis, Gediminas 20 September 2006 (has links)
The work presents the research of high-strength cast iron used for manufacturing of large grinding structures with dross layer and with non-homogeneous heat treatment volumes that remains inside during manufacturing process and subjected to high-cycle loading. The original research methodology used for investigations allowed to obtain the results of high-cycle loading. Obtained results have been used to improve the structural elements calculation methods.
|
9 |
LAMINAR-TURBULENT TRANSITION FOR ATTACHED AND SEPARATED FLOWZhang, Qian 01 January 2010 (has links)
A major challenge in the design of turbomachinery components for aircraft gas turbine engines is high cycle fatigue failures due to flutter. Of particular concern is the subsonic/transonic stall flutter boundary which occurs at part speed near the stall line. At these operating conditions the incidence angle is large and the relative Mach number is high subsonic or transonic. Viscous effects dominate for high incidence angles.
In order to predict the flutter phenomena, accurate calculation of the steady and unsteady aerodynamic loading on the turbomachinery airfoils is necessary. The development of unsteady aerodynamic models to predict the unsteady forces and moments acting on turbomachine airfoils is an area of fundamental research interest. Unsteady Reynolds Averaged Navier-Stokes (RANS) models have been developed to accurately account for viscous effects. For these Reynolds averaged equations turbulence models are needed for the Reynolds stress terms. A transition model is also necessary. The transition onset location is determined by a transition onset model or specified at the suction peak. Usually algebraic, one or two-equation or Reynolds stress turbulence models are used. Since the Reynolds numbers in turbomachinery are large enough to guarantee the flow is turbulent, suitable transition and turbulence models are crucial for accurate prediction of steady and unsteady separated flow.
The viscous flow solution of compressor airfoils at off-design conditions is challenging due to flow separation and transition to turbulent flow within separation bubbles. Additional complexity arises when the airfoils are vibrating as is encountered in stall flutter. In this investigation calculations are made of a transonic compressor airfoil in steady flow and with the airfoils oscillating in a pitching motion about the mid-chord at 0° and 10° of chordal incidence angle, and correlated with experiments conducted in the NASA GRC Transonic Flutter Cascade. To model the influence of flow transition on the steady and unsteady aerodynamic flow characteristics, the Solomon, Walker, and Gostelow (SWG) transition model is utilized. The one-equation Spalart-Allmaras model is used to model turbulence. Different transition onset models including fixed onset are implemented and compared for the two incidence angle cases. At each incidence angle, the computational model is compared to the experimental data for the steady flow case and also for pitching oscillation at a reduced frequency of 0.4. The 10° incidence angle case has flow separation over front 40% of the airfoil chord. The operating conditions considered are an inlet Mach number of 0.5 and a Reynolds number of 0.9 Million.
|
10 |
Influence de micro-entailles sur le comportement en fatigue à grand nombre de cycles d'un alliage de TA6V : Comparaison avec le fretting-fatigue / Influence of Micro-Notches on High Cycles Fatigue for a TA6V Alloy : Comparison with Fretting-FatigueSimon, Julien 26 September 2017 (has links)
Ce travail a porté sur l’influence d’entailles micrométriques sur la tenue en fatigue à grand nombre de cycles d’un alliage de titane et la comparaison avec un cas de fretting-fatigue. Des études préliminaire sont montré que des entailles micrométriques pouvaient reproduire les champs de contraintes d’essais de fretting-fatigue. Le projet COGNAC dirigé par Safran Aircraft Engines a été créé dans l’objectif d’évaluer la faisabilité d’un modèle unique capable de simuler la tenue en fatigue de pièces subissant des sollicitations de fretting ou de fatigue en présence d’entailles. Le cadre expérimental de cette thèse est limité à la partie du projet traitant des entailles. Afin d’avoir le même état de préparation de surface, les micro-entailles et les surfaces des éprouvettes de fretting fatigue sont usinées par meulage. Afin de reproduire les gradients de contraintes observés localement pour des chargements de fretting-fatigue, des entailles en V avec des rayons compris entre 50 μm à 500 μm ont été choisies.L’étude du taux de triaxialité et du cisaillement a permis de définir une géométrie d’éprouvette de comparaison avec le fretting fatigue qui comporte 2 entailles en V inclinées en face à face. Trois campagnes expérimentales de fatigue à grand nombre de cycles ont été menées. La première sur des éprouvettes lisses meulées afin d’obtenir une limite de fatigue de référence sans concentration de contraintes. La seconde sur des éprouvettes avec une entaille non inclinée ayant une profondeur de500 μm afin d’étudier les effets du rayon de fond d’entaille sur la limite de fatigue. La dernière est une campagne sur les éprouvettes avec 2 entailles inclinées qui permettent de reproduire les champs de contrainte des essais de fretting. Les premiers stades de fissuration ont été étudiés. Les facettes de pseudo clivage, la présence d’un premier stade de fissuration et les amorçages multiples en fond d’entaille ressemblent à ce qui peut être vu sur des essais de fretting. Par contre la présence de fissures non propageantes en fond d’entaille sous la limite de fatigue n’a pas pu être démontrée, alors que ces fissures non propageantes sont observables sur les essais de fretting-fatigue. Les sites d’amorçages et les mécanismes des premiers endommagements semblent être pilotés par les zones affectées par le meulage. Enfin trois critères de fatigue ont été utilisés afin de tenter de reproduire nos résultats expérimentaux. L’approche basée sur la théorie du gradient –avec un gradient local et un impact affine du gradient- et celle basée sur la théorie de la distance critique ont fourni des résultats corrects sur les éprouvettes entaillées mais ne peuvent faire le lien avec les éprouvettes sans concentrations de contraintes. Enfin, l’approche probabiliste utilisée a produit des résultats très proches des résultats expérimentaux à la fois sur des éprouvettes lisses et des micro-entailles. La comparaison des résultats expérimentaux montrent que le champ de contrainte de Crossland proche de la surface d’amorçage du fretting-fatigue est proportionnel à celui proche d’un fond d’entaille dans le cas d’une éprouvette avec 2 entailles en face à face. Le niveau de la sollicitation des 2 essais diffère localement d’environ20%. Dans la suite des travaux, il serait particulièrement intéressant de relancer une campagne de comparaison entre fretting et entailles en utilisant un critère probabiliste pour dimensionner les essais afin de proposer une méthodologie commune de prise en compte des concentrations de contraintes dans les cas de fretting-fatigue et de concentrateurs géométriques sollicités en fatigue. / This study is about the influence of micro-notches on the high cycle fatigue behavior of a Ti64 alloy and the comparison with similar fretting fatigue tests. Preliminary studies showed that fretting-fatigue stress fields can be reproduced by micro-notched. The COGNAC project leaded by Safran Aircraft Engines was built to verify if a unique model can reproduce both fretting-fatigue and notched samples fatigue tests. The scope of this experimental study is limited to the notched samples. In this PHD thesis, the notches are grinded and the results are compared with fretting-fatigue tests on grinded surfaces. V-notched with notch root radius from 50 to 500 μm were chosen to reproduce the stress gradient of fretting-fatigue tests. A geometry with two inclined notches facing each other allows to reproduce shear stress and stress triaxiality from fretting-fatigue tests. Three different experimental studies were performed. First on un-notched specimens with a grinded surface state to produce a reference fatigue limit for grinded surface state without stress concentration. The second study the notch root radius effect on the fatigue limit with samples with one non-inclined notch of 500 μm of depth. The last one is a series of fatigue tests on samples with two inclined notches that reproduce the stress distribution of fretting-fatigue tests. Pseudo-cleavage facets, multi cracks initiations in the notch root and the presence of two propagation stages is similar to the fretting-fatigue tests mechanisms. However, non propagating cracks were not observe at the notch root while many of them were present during the fretting-fatigue test. The initiation sites and the early stages of propagation seem to be controlled by grinded affected areas. Finally, three fatigue criteria were used to try to reproduce the experimental results. The criteria based on the critical distance theory and gradient theory –with a local gradient and an affine effect of the gradient term- can reproduce the fatigue limits of notched samples but fail to predict both notched and un-notched specimen fatigue limits with a unique data set. The third one is a probabilistic criterion which success to predict the experimental fatigue limits not only of notched samples but also smooth ones. The comparisons between the experimental results of the fatigue on the specimens with two inclined notches and the fretting-fatigue shows a difference of 20%. The distribution of the Crossland stress is quite similar. In the future, it would be useful to make a new comparison between fretting-fatigue and fatigue on notches using the probabilistic criterion to design the tests. This new comparison could lead to the proposal of a unique methodology to take into account the fretting-fatigue and the fatigue on stress concentrators.
|
Page generated in 0.0447 seconds