• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 706
  • 473
  • 212
  • 146
  • 88
  • 57
  • 52
  • 20
  • 14
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • Tagged with
  • 2053
  • 2053
  • 911
  • 585
  • 569
  • 422
  • 419
  • 404
  • 355
  • 332
  • 328
  • 327
  • 323
  • 317
  • 317
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

High Performance CCSDS Processing Systems for EOS-AM Spacecraft Integration and Test

Brown, Barbara, Bennett, Toby, Betancourt, Jose 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The Earth Observing System-AM (EOS-AM) spacecraft, the first in a series of spacecraft for the EOS, is scheduled for launch in June of 1998. This spacecraft will carry high resolution instruments capable of generating large volumes of earth science data at rates up to 150 Mbps. Data will be transmitted in a packet format based upon the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) recommendations. The Data Systems Technology Division (DSTD) at NASA's Goddard Space Flight Center (GSFC) has developed a set of high performance CCSDS return-link processing systems to support testing and verification of the EOS-AM spacecraft. These CCSDS processing systems use Versa Module Eurocard bus (VMEBus) Very Large Scale Integration (VLSI)-based processing modules developed for the EOS ground segment to acquire and handle the high rate EOS data. Functions performed by these systems include frame synchronization, Reed-Solomon error correction, fill frame removal, virtual channel sorting, packet service processing, and data quality accounting. The first of the systems was delivered in October 1994 to support testing of the onboard formatting equipment. The second and third systems, delivered in April 1995, support spacecraft checkout and verification. This paper will describe the function and implementation of these systems.
22

Wide bandwidth control of AC machines

Boast, G. S. January 1992 (has links)
No description available.
23

Profiling of RT-PICLS Code

Kelling, Jeffrey, Juckeland, Guido 15 May 2017 (has links) (PDF)
It was observed, that the RT-PICLS code ran by FWKT on the hypnos cluster was producing an unusual amount of system load, according to Ganglia metrics. Since this may point to an IO-problem in the code, this code was analyzed more closely.
24

Study of zooplankton feeding selectivity by HPLC analysis of phytoplankton pigment.

January 2004 (has links)
Siu Yuen Yu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 122-139). / Abstracts in English and Chinese. / Abstract (English) --- p.i / Abstract (Chinese) --- p.iii / Acknowledgments --- p.v / Table of Contents --- p.vi / List of Figures --- p.x / List of Tables --- p.xvi / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter CHAPTER 2 --- LITERATURE REVIEW --- p.7 / Chapter 2.1 --- Traditional methods for studying zooplankton feeding selectivity --- p.7 / Chapter 2.1.1 --- Cell counting after laboratory feeding experiments --- p.7 / Chapter 2.1.2 --- Direct examination of gut contents --- p.8 / Chapter 2.1.3 --- Use of radioactive tracers --- p.9 / Chapter 2.1.4 --- Gut fluorescence method --- p.9 / Chapter 2.2 --- High Performance Liquid Chromatography analysis of phytoplankton pigments --- p.11 / Chapter 2.2.1 --- Principle --- p.11 / Chapter 2.2.2 --- Pigments as signature markers of phytoplankton --- p.11 / Chapter 2.2.3 --- Development of HPLC analysis of phytoplankton pigments --- p.16 / Chapter 2.2.4 --- Advantages of HPLC analysis of phytoplankton pigments --- p.17 / Chapter 2.2.5 --- Limitation of HPLC analysis of phytoplankton pigments --- p.18 / Chapter 2.3 --- Zooplankton feeding selectivity --- p.19 / Chapter 2.3.1 --- Ecological importance of zooplankton feeding selectivity --- p.19 / Chapter 2.3.2 --- Factors affecting zooplankton feeding selectivity --- p.19 / Chapter 2.3.3 --- Feeding selectivity of zooplankton studied in this study --- p.21 / Chapter 2.3.3.1 --- p. avirostirs --- p.21 / Chapter 2.3.3.2 --- Paracalanus spp --- p.22 / Chapter 2.3.3.3 --- Pseudevadne tergestina --- p.23 / Chapter 2.4 --- Pigment degradation in guts of zooplankton --- p.24 / Chapter 2.4.1 --- Experimental design --- p.24 / Chapter 2.4.2 --- Pigment degradation --- p.24 / Chapter 2.5 --- "Tolo Harbour, Hong Kong" --- p.26 / Chapter 2.5.1 --- Site description --- p.26 / Chapter 2.5.2 --- Phytoplankton and zooplankton in Tolo Harbour --- p.27 / Chapter CHAPTER 3 --- MATERIALS AND METHODS --- p.28 / Chapter 3.1 --- Field sampling --- p.28 / Chapter 3.1.1 --- Study of seasonal patterns in zooplankton feeding selectivity --- p.28 / Chapter 3.1.1.1 --- Collection of phytoplankton and zooplankton for pigment analysis --- p.28 / Chapter 3.1.1.2 --- Collection of phytoplankton and zooplankton for plankton enumeration --- p.30 / Chapter 3.1.2 --- Collection of phytoplankton and zooplankton for laboratory feeding experiments --- p.32 / Chapter 3.2 --- Laboratory experiments and data analysis --- p.33 / Chapter 3.2.1 --- Study of seasonal patterns in zooplankton feeding selectivity --- p.33 / Chapter 3.2.1.1 --- HPLC of phytoplankton pigments --- p.33 / Chapter 3.2.1.2 --- Fluorometric measurement of chlorophyll-α --- p.35 / Chapter 3.2.1.3 --- Plankton identification and enumeration --- p.36 / Chapter 3.2.2 --- Laboratory feeding experiments for investigation of pigment degradation in zooplankton gut --- p.37 / Chapter CHAPTER 4 --- RESULTS --- p.41 / Chapter 4.1 --- Information on Tolo Harbour --- p.41 / Chapter 4.1.1 --- Temperature and salinity in Tolo Harbour --- p.41 / Chapter 4.1.2 --- Plankton composition and community in Tolo Harbour --- p.43 / Chapter 4.1.2.1 --- Phytoplankton --- p.43 / Chapter 4.1.2.2 --- Zooplankton --- p.50 / Chapter 4.2 --- Seasonal zooplankton feeding selectivity investigated by HPLC phytoplankton pigment analysis --- p.53 / Chapter 4.2.1 --- Verification of HPLC pigment analysis by fluorometric analysis --- p.53 / Chapter 4.2.2 --- Correlations between phytoplankton cell densities and pigment concentrations in water samples --- p.55 / Chapter 4.2.3 --- Feeding selectivity of zooplankton on different phytoplankton groups --- p.73 / Chapter 4.2.4 --- Feeding selectivity of zooplankton on dinoflagellates --- p.87 / Chapter 4.2.5 --- Feeding selectivity of zooplankton on diatoms --- p.87 / Chapter 4.3 --- Feeding selectivity on phytoplankton by other cladoceran - Pseudevadne tergestina --- p.89 / Chapter 4.4 --- Pigment degradation in zooplankton guts after ingestion of phytoplankton --- p.90 / Chapter 4.5 --- Clearance rates of P. avirostris and Paracalanus spp. in feeding experiments --- p.101 / Chapter CHAPTER 5 --- DISCUSSIONS --- p.105 / Chapter 5.1 --- Experiment design --- p.105 / Chapter 5.2 --- Seasonal zooplankton feeding selectivity investigated by HPLC phytoplankton pigment analysis --- p.108 / Chapter 5.2.1 --- Correlations between phytoplankton cell densities and pigment concentrations in water samples --- p.108 / Chapter 5.2.2 --- Feeding selectivity of zooplankton on different phytoplankton groups --- p.108 / Chapter 5.2.3 --- Feeding selectivity of Pseudevadne tergestina --- p.111 / Chapter 5.3 --- Feeding experiments for investigating pigment degradation in guts of zooplankton --- p.112 / Chapter 5.3.1 --- Principle --- p.112 / Chapter 5.3.2 --- Degradation for different pigments in guts of P. avirostris and Paracalanus spp. --- p.112 / Chapter 5.4 --- Clearance rates of P. avirostris and Paracalanus spp. --- p.114 / Chapter 5.4.1 --- p. avirostris --- p.114 / Chapter 5.4.2 --- Paracalanus spp. --- p.115 / Chapter 5.5 --- Limitations of HPLC analysis of phytoplankton pigments --- p.116 / Chapter 5.6 --- Environmental events related to feeding selectivity of zooplankton in Tolo Harbour --- p.118 / Chapter 5.6.1 --- Energy transfer in trophic level --- p.118 / Chapter 5.6.2 --- Abilities of p. avirostris and Paracalanus spp. to control red tides in Tolo Harbour --- p.118 / Chapter CHAPTER 6 --- CONCLUSION --- p.120 / REFERENCES --- p.122 / APPENDIX
25

Shear strength of high performance concrete beams.

Kong, Paul Y.L. January 1996 (has links)
An analytical and experimental investigation on the shear strength of High Performance Concrete (HPC) beams with vertical shear reinforcement or stirrups was carried out. The analytical work involved developing a theory based on the truss analogy, capable of predicting the response and shear strength of such beams subjected to combined bending moment and shear force.The experimental work comprised forty-eight beam specimens in eight series of tests. Most of the beams were 250 mm wide, 350 mm deep and had a clear span of approximately 2 metres. The largest beam was 250 mm wide, 600 mm deep and had a clear span of 3.1 metres. Test parameters included the concrete cover to the shear reinforcement cage, shear reinforcement ratio, longitudinal tensile steel ratio, overall beam depth, shear span-to-depth ratio and concrete compressive strength. The loading configurations included using one, two or four symmetrically placed concentrated loads on simply supported spans.The theory predicted the shear strength of the beams in the present study well. When beams from previous investigations were included, the theory also gave good prediction of the shear strength. Apart from this, comparisons of shear strength were also made with the predictions by the shear design provisions contained in the Australian Standard AS 3600 (1994), American Concrete Institute Building Code ACI 318-95, Eurocode EC2 Part 1 and Canadian Standard CSA A23.3-94. The AS 3600 method was found to give the best correlation with the test results among all the code methods.
26

Full Scale Testing of Prestressed, High Performance Concrete, Bridge Girders

Canfield, Scott Robinson 20 May 2005 (has links)
The objective of this research was to evaluate the current design specifications for use on prestressed, High Performance Concrete (HPC) bridge girders. An AASHTO Type IV and modified BT-56 girders were constructed with a 10,000 psi HPC to which a composite 7000 psi HPC deck was cast on top. The composite girders were tested in flexure, with the Type IV being tested to failure. The results of the flexure tests showed that the current AASHTO Specification for cracking moment and ultimate capacity are conservative. In addition to flexural testing, each composite girder was studied with respect to the deck contraction induced girder deflection. Each deck and girder were instrumented with strain gauges and string potentiometes. The results of the study indicated the induced deflections are significantly greater than deflections from the deck dead load, and should be considered to accurately predict bridge deflection.
27

Computational Parameter Selection and Simulation of Complex Sphingolipid Pathway Metabolism

Henning, Peter Allen 22 May 2006 (has links)
Systems biology is an emerging field of study that seeks to provide systems-level understanding of biological systems through the integration of high-throughput biological data into predictive computational models. The integrative nature of this field is in sharp contrast as compared to the Reductionist methods that have been employed since the advent of molecular biology. Systems biology investigates not only the individual components of the biological system, such as metabolic pathways, organelles, and signaling cascades, but also considers the relationships and interactions between the components in the hope that an understandable model of the entire system can eventually be developed. This field of study is being hailed by experts as a potential vital technology in revolutionizing the pharmaceutical development process in the post-genomic era. This work not only provides a systems biology investigation into principles governing de novo sphingolipid metabolism but also the various computational obstacles that are present in converting high-throughput data into an insightful model.
28

Design and Implementation of High Performance Algorithms for the (n,k)-Universal Set Problem

Luo, Ping 14 January 2010 (has links)
The k-path problem is to find a simple path of length k. This problem is NP-complete and has applications in bioinformatics for detecting signaling pathways in protein interaction networks and for biological subnetwork matching. There are algorithms implemented to solve the problem for k up to 13. The fastest implementation has running time O^*(4.32^k), which is slower than the best known algorithm of running time O^*(4^k). To implement the best known algorithm for the k-path problem, we need to construct (n,k)-universal set. In this thesis, we study the practical algorithms for constructing the (n,k)-universal set problem. We propose six algorithm variants to handle the increasing computational time and memory space needed for k=3, 4, ..., 8. We propose two major empirical techniques that cut the time and space tremendously, yet generate good results. For the case k=7, the size of the universal set found by our algorithm is 1576, and is 4611 for the case k=8. We implement the proposed algorithms with the OpenMP parallel interface and construct universal sets for k=3, 4, ..., 8. Our experiments show that our algorithms for the (n,k)-universal set problem exhibit very good parallelism and hence shed light on its MPI implementation. Ours is the first implementation effort for the (n,k)-universal set problem. We share the effort by proposing an extensible universal set construction and retrieval system. This system integrates universal set construction algorithms and the universal sets constructed. The sets are stored in a centralized database and an interface is provided to access the database easily. The (n,k)-universal set have been applied to many other NP-complete problems such as the set splitting problems and the matching and packing problems. The small (n,k)-universal set constructed by us will reduce significantly the time to solve those problems.
29

Memory management for high-performance applications

Berger, Emery David. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2002. / Vita. Includes bibliographical references. Available also from UMI Company.
30

Assessment of open-source software for high-performance computing

Rapur, Gayatri. January 2003 (has links) (PDF)
Thesis (M.S.)--Mississippi State University. Department of Computer Science and Engineering. / Title from title screen. Includes bibliographical references.

Page generated in 0.2975 seconds