• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 76
  • 18
  • 17
  • 17
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Java-based Human-Machine Interface Development of Automation System

Lin, Chih-Chung 01 July 2002 (has links)
Graphic-Monitor software on market always emphasizes a friendly User-Interface, many types of controllers or devices support, convenient Network-Communication and to communicate with related Database. Nevertheless, I/O control interface cards are not supported by the Graphic-Monitor software. Only Programmable Logic Controllers and Distributed Input/Output modules are supported. In addition, although it provides many basic functions to set devices¡¦ action process, it doesn¡¦t allow user to write complex motion control program. This limits the flexibility of motion control. The solution in the academia is to use various kinds of programming language like C++ Builder or LabVIEW as the development tools. And then, depends on the demand of the hardware to develop Human Machine Interfaces of production devices. Although these programming languages are very powerful, they are too expensive and platform-dependent. In this thesis, a platform independent and cost-free programming language, Java, is adopted to develop a human-machine-interface of an automatic production system integrated with various kinds of I/O control cards. This HMI has the following features: -- Consists of data monitoring, motion control, image inspection, and network communication modules; -- Can run under any operation system; -- Cost-effective. Two integrated examples are implemented with this HMI in the lab. One is ¡¥Production system remote control¡¦ that combines the motion control and network communication modules; another is ¡¥Vision introduce search and positioning system¡¦, in which the motion control and image inspection modules are used.
2

Integration of Java-based Human-Machine Interface of Automation System

Tsai, Tzung-Shiou 12 September 2002 (has links)
As the Information Age coming, more and more factories take the advantages of automation control. Therefor, the Human-Machine Interface(HMI) System are getting more and more important. So, building a HMI System with high flexibility and low cost has become an important point. This research is focused on the flexibility of HMI program. We use a new structure of program, add a common interface between each level to make each level more independent. And we take the conception of ¡§Design Patterns¡¨ of GOF to make each module more flexible. Then, we design a new way for the module communication.
3

Challenges and potential of technology integration in modern ship management practices

Bhardwaj, Suresh January 2013 (has links)
This thesis explores the challenges and potential of technology integration in current ship management practices. While technology advancements were designed to be contributing to minimising task complexity, issues such as fatigue, increased administrative burden and technology assisted accidents still plague the industry. In spite of the clearly recognisable benefits of using modern technology in the management of ships, in practice its application appears lacking by a considerable margin. The main driver of the study was to appreciate the cause of this disparity. The study first reviewed a wide body of literature on issues involving the use of technology which included academic literature with empirical evidences and theoretical explanations of implementation of technology at work. With the help of the extant knowledge this research embarked on providing an explanation to the gap that existed in the application of technology in the shipping industry. By taking a case study approach the thesis looked into the induction and integration of technology in the management and operation of ships that primarily interfaced closely between the ship and its management unit on shore. Three companies with mutually diverse management setup were studied. The fourth case comprised of purposefully selected senior members of ships’ staff. The analysis of the data revealed that the manifestation of the gap in technology implementation is caused by deeper influences at work in the shipping industry. The un-optimised technology integration results in the seafarer, who is the keystone to the technology application, becoming a victim of the circumstances. The technology that was intended to ease operations and burdens ends up in controlling him, even leaving him under-resourced and causing fatigue.This was not an unintended outcome but the result of weak regulatory practices, short-term capital outlook and weakened labour practices in the shipping industry all caused by wider social and economic developments affecting not just this industry but businesses globally. The impact of such influences was however more acute in this industry resulting in such extreme consequence. By bringing to light the limited application of some fundamental principles of human-systems integration, this study has attempted to expand the boundaries of research on the subject and contributed to the holistic understanding of the various underlying factors that influence technology integration in ship management processes.
4

Improving Accessibility of Fully Automated Driving Systems for Blind and Low Vision Riders

Bloomquist, Eric Tait 08 August 2023 (has links)
For people who are blind or have low vision (BLV), physical barriers and negative experiences related to using current transportation options can have negative impacts on quality of life. The emergence of levels 4 – 5 automated driving system-dedicated vehicles (L4+ ADS), which will not require human operators to provide any input into the dynamic driving task, could empower the BLV community by providing an independent means of transportation. Yet, the BLV community has concerns that their needs are not being adequately considered by those currently developing L4+ ADSs, which will result in this technology being inaccessible to populations that it would otherwise greatly benefit. The current study sought to address this gap in the literature by explicitly evaluating the information and interactions that BLV riders will require from L4+ ADS. Specifically, we collected focus group and empirical data across three studies on BLV riders' information and interaction requirements for L4+ ADSs across expected and unexpected driving scenarios as well as pick-up and drop-off tasks (PUDO). Through focus groups with sighted (n = 11) and BLV participants (n = 11; Study 1), we identified similarities and differences between sighted and BLV participants in terms of their user needs for L4+ ADSs across five challenging driving scenarios. Next, we examined BLV participants' (n = 13; Study 2) information requests in real-world settings to better understand BLV riders' needs during a simulated L4+ ADS experience. Our findings show that BLV riders want information that helps with (a) orienting to important objects in the environment during PUDO, (b) determining their location while riding in the ADS, and (c) understanding the ADSs' actions. Finally, we developed an HMI prototype using BLV riders' feedback in Studies 1 and 2 and had BLV participants engage with it during a simulated L4+ ADS trip (n = 12; Study 3). Our results suggest that BLV riders value information about nearby landmarks in familiar and unfamiliar areas, as well as explanations for ADS's actions during ordinary and unexpected scenarios. Additionally, BLV riders need information about required walking distances and presence of tripping hazards in order to select a drop-off location. Taken together, our studies show that BLV riders have specific requirements that L4+ ADS must meet in order for this to be an accessible means of transportation. In light of these findings, we generated 28 guidelines and 44 recommendations that could be used by designers to improve the accessibility of L4+ ADSs for BLV riders. / Doctor of Philosophy / When using current transportation options, individuals who are blind or have low vision (BLV) often encounter physical barriers and negative experiences, which can limit their ability to travel independently and have negative impacts on their overall quality of life. However, future vehicles equipped with levels 4 – 5 automated driving systems (L4+ ADSs) will offer transportation that requires no input from human operators, and thus, could be used as an independent means of transportation for the BLV community. Unfortunately, the BLV community has concerns that their needs are not being adequately considered by those currently developing L4+ ADSs, which will result in this technology being inaccessible to populations that it would otherwise greatly benefit. The current work sought to address this gap in the literature by evaluating the information and interactions that BLV riders will require from L4+ ADS. We conducted three studies to collected data on BLV riders' information and interaction requirements for L4+ ADSs across a variety of driving scenarios as well as tasks relating to being picked up and dropped-off by an L4+ ADS. First, through focus groups with sighted and BLV participants, we identified similarities and differences between sighted and BLV participants' user needs for L4+ ADSs across five challenging driving scenarios. Next, to better understand BLV riders' needs, we had BLV participants indicate when they would desire information during a simulated L4+ ADS ride-hailing experience in real-world settings. Our findings show that BLV riders want information that helps with (a) orienting to important objects in the environment during PUDO, (b) determining their location during their trip, and (c) understanding the reason for the ADS's actions. Finally, using BLV riders' feedback, we developed an HMI prototype and had BLV participants engage with it during a simulated L4+ ADS trip. Our results suggest that BLV riders value information about nearby landmarks in both familiar and unfamiliar areas, as well as explanations for ADS's actions during common (e.g., stopping at a stop sign) and unexpected driving scenarios (e.g., sudden swerve). Additionally, when being dropped off, BLV riders need information about required walking distances and presence of tripping hazards in order to select a desirable drop-off location. Taken together, our studies show that BLV riders have specific requirements that L4+ ADS must meet in order for this to be an accessible means of transportation. In light of these findings, we generated a set of guidelines and recommendations that designers can use to improve the accessibility of L4+ ADSs for BLV riders.
5

Autonomous Vehicle & Pedestrian Interaction

Uji, Terkuma January 2022 (has links)
This degree project investigates social and technological aspects of human-vehicle interactions with regards to driverless autonomous utilitarian vehicles in urban context and proposes the use of LED lighting as an external Human Machine Interface for vehicle pedestrian signaling.
6

Digitale Landwirtschaft und das User-Interface: eine Herstellersicht

Jendis, Michael 06 September 2021 (has links)
Aufgrund der stetig wachsenden Weltbevölkerung bei gleichzeitig sinkenden Agrarressourcen ist die Automatisierung auf dem Feld notwendig. Die dafür erforderlichen Maschinen, Technologien und Datenströme sind im entstehen und z. T. verfügbar. Jedoch ist die Automatisierung auf dem Feld im Vergleich zur Fabrikautomation zusätzlichen Störgrößen ausgesetzt, die eine permanent verfügbare Eingriffsressource notwendig machen. Der Autor postuliert die Entstehung von Maschinen Teams, die von einem besetzten Schlepper geführt werden. Durch die Führung der zusätzlichen Automaten, in deren Programmablauf eingegriffen werden muss, wird die Komplexität der Mensch-Maschine Schnittstelle zunehmen. Hier ist aber schon eine Grenze erreicht, sodaß zusätzliche Bedienelemente oder weitere Displays keine Lösung darstellen. Als Lösung werden hier Elemente aufgezeigt, die Flexibilität in der Bedienung und in der Darstellung optimieren und so zu einem permanenten Wechsel in puncto Maschinenbedienung fähig sind. An einem realisierten Prototyp werden Technologien und Funktionsumfänge deutlich gemacht.
7

DESIGN OF A MULTI-PURPOSE KU-BAND STATION

Nötzel, Klaus Ralf 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Deutsche Telekom has been operating different communication satellites for several years. DLR (Deutsches Zentrum für Luft- und Raumfahrt e.V.) with its GSOC (German Space Operation Center) is responsible for German space missions. Deutsche Telekom and DLR formed a joint venture to build a Ku-Band station for back-up purposes and to provide LEOP services in the Ku-Band for Europe. The station is located at the DLR premises near Munich. The new station is operational since 1998. The aim was to design the system in a way that the operation effort in costs aspects and human intervention is minimized. All operational tasks can be performed besides the routine work of one person at the Satellite Control Center (SCC). The station is remote controlled from different SCCs. The SCC has one consistent Human Machine Interfaces which includes not only the Ku-Band station but also the backup S-Band stations at different locations. This paper describes conception and operation of a LEOP Ku-Band Station with shared users at different sites.
8

Förstudie av gränssnitt och styrprogram till SD-180 / Pilot study of user interface and program for SD-180

Ohlander, Henrik January 2010 (has links)
<p>En av Glimek AB:s mest förekommande maskiner är SD-180 som används för degavvägning. Den finns i flera olika varianter. Den enklaste har enbart start- och stoppknapp och en potentiometer för att ställa hastigheten och en mer avancerad variant har en operatörspanel där olika möjligheter till inställningar finns.</p><p>Konstruktionen på denna maskin hade inte uppdaterats på många år och behövde en uppdatering av användargränssnitt, programvara och elkonstruktion. Arbetet har framförallt koncentrerat sig på användargränssnittet till panelen.</p><p>En del av arbetet var att undersöka om det var möjligt att utesluta PLC ur konstruktionen och använda en mer avancerad programmerbar frekvensomformare. Eftersom det blev problem med lanseringen av programvara till frekvensomformaren och enbart en mindre bra fungerande demoversion fanns tillgänglig så var detta tyvärr inte möjligt.</p><p>I arbetet har olika varianter på operatörspaneler utretts. Exempel på flödesdiagram till PLC har också gjorts.</p> / <p>One of Glimek AB's most common machines is the dough divider, SD-180. It is available in many different variants. The simplest has only a start- and stop button and a potentiometer to set the speed. A more advanced version has an operator panel with various options.</p><p>The design of this machine had not been updated in many years and needed an update of the user interface, software and electrical construction. The thesis has mainly concentrated on the human machine interface.</p><p>A part of the work was to investigate whether it was possible to exclude the PLC from the design and use a more powerful and programmable frequency inverter.Unfortunately problems arose with the release of the software for the frequency converter. Only a demo version of the software where available and it was not possible to this study because of that.</p><p>Different variants of human machine interface have been investigated. An example flowchart diagram to the PLC has also been made.</p>
9

Förstudie av gränssnitt och styrprogram till SD-180 / Pilot study of user interface and program for SD-180

Ohlander, Henrik January 2010 (has links)
En av Glimek AB:s mest förekommande maskiner är SD-180 som används för degavvägning. Den finns i flera olika varianter. Den enklaste har enbart start- och stoppknapp och en potentiometer för att ställa hastigheten och en mer avancerad variant har en operatörspanel där olika möjligheter till inställningar finns. Konstruktionen på denna maskin hade inte uppdaterats på många år och behövde en uppdatering av användargränssnitt, programvara och elkonstruktion. Arbetet har framförallt koncentrerat sig på användargränssnittet till panelen. En del av arbetet var att undersöka om det var möjligt att utesluta PLC ur konstruktionen och använda en mer avancerad programmerbar frekvensomformare. Eftersom det blev problem med lanseringen av programvara till frekvensomformaren och enbart en mindre bra fungerande demoversion fanns tillgänglig så var detta tyvärr inte möjligt. I arbetet har olika varianter på operatörspaneler utretts. Exempel på flödesdiagram till PLC har också gjorts. / One of Glimek AB's most common machines is the dough divider, SD-180. It is available in many different variants. The simplest has only a start- and stop button and a potentiometer to set the speed. A more advanced version has an operator panel with various options. The design of this machine had not been updated in many years and needed an update of the user interface, software and electrical construction. The thesis has mainly concentrated on the human machine interface. A part of the work was to investigate whether it was possible to exclude the PLC from the design and use a more powerful and programmable frequency inverter.Unfortunately problems arose with the release of the software for the frequency converter. Only a demo version of the software where available and it was not possible to this study because of that. Different variants of human machine interface have been investigated. An example flowchart diagram to the PLC has also been made.
10

A Study of Human-Machine Interface (HMI) Learnability for Unmanned Aircraft Systems Command and Control

Haritos, Tom 01 January 2017 (has links)
The operation of sophisticated unmanned aircraft systems (UAS) involves complex interactions between human and machine. Unlike other areas of aviation where technological advancement has flourished to accommodate the modernization of the National Airspace System (NAS), the scientific paradigm of UAS and UAS user interface design has received little research attention and minimal effort has been made to aggregate accurate data to assess the effectiveness of current UAS human-machine interface (HMI) representations for command and control. UAS HMI usability is a primary human factors concern as the Federal Aviation Administration (FAA) moves forward with the full-scale integration of UAS in the NAS by 2025. This study examined system learnability of an industry standard UAS HMI as minimal usability data exists to support the state-of-the art for new and innovative command and control user interface designs. This study collected data as it pertained to the three classes of objective usability measures as prescribed by the ISO 9241-11. The three classes included: (1) effectiveness, (2) efficiency, and (3) satisfaction. Data collected for the dependent variables incorporated methods of video and audio recordings, a time stamped simulator data log, and the SUS survey instrument on forty-five participants with none to varying levels of conventional flight experience (i.e., private pilot and commercial pilot). The results of the study suggested that those individuals with a high level of conventional flight experience (i.e., commercial pilot certificate) performed most effectively when compared to participants with low pilot or no pilot experience. The one-way analysis of variance (ANOVA) computations for completion rates revealed statistical significance for trial three between subjects [F (2, 42) = 3.98, p = 0.02]. Post hoc t-test using a Bonferroni correction revealed statistical significance in completion rates [t (28) = -2.92, p<0.01] between the low pilot experience group (M = 40%, SD =. 50) and high experience group (M = 86%, SD = .39). An evaluation of error rates in parallel with the completion rates for trial three also indicated that the high pilot experience group committed less errors (M = 2.44, SD = 3.9) during their third iteration when compared to the low pilot experience group (M = 9.53, SD = 12.63) for the same trial iteration. Overall, the high pilot experience group (M = 86%, SD = .39) performed better than both the no pilot experience group (M = 66%, SD = .48) and low pilot experience group (M = 40%, SD =.50) with regard to task success and the number of errors committed. Data collected using the SUS measured an overall composite SUS score (M = 67.3, SD = 21.0) for the representative HMI. The subscale scores for usability and learnability were 69.0 and 60.8, respectively. This study addressed a critical need for future research in the domain of UAS user interface designs and operator requirements as the industry is experiencing revolutionary growth at a very rapid rate. The deficiency in legislation to guide the scientific paradigm of UAS has generated significant discord within the industry leaving many facets associated with the teleportation of these systems in dire need of research attention. Recommendations for future work included a need to: (1) establish comprehensive guidelines and standards for airworthiness certification for the design and development of UAS and UAS HMI for command and control, (2) establish comprehensive guidelines to classify the complexity associated with UAS systems design, (3) investigate mechanisms to develop comprehensive guidelines and regulations to guide UAS operator training, (4) develop methods to optimize UAS interface design through automation integration and adaptive display technologies, and (5) adopt methods and metrics to evaluate human-machine interface related to UAS applications for system usability and system learnability.

Page generated in 0.0337 seconds