Spelling suggestions: "subject:"[een] HYPERBOLA"" "subject:"[enn] HYPERBOLA""
31 |
A geometria de algumas famílias tridimensionais de sistemas diferenciais quadráticos no plano / The geometry of some tridimensional families of planar quadratic differential systemsAlex Carlucci Rezende 22 September 2014 (has links)
Sistemas diferenciais quadráticos planares estão presentes em muitas áreas da matemática aplicada. Embora mais de mil artigos tenham sido publicados sobre os sistemas quadráticos ainda resta muito a se conhecer sobre esses sistemas. Problemas clássicos, e em particular o XVI problema de Hilbert, estão ainda em aberto para essa família. Um dos objetivos dos pesquisadores contemporâneos é obter a classificação topológica completa dos sistemas quadráticos. Devido ao grande número de parâmetros (essa família possui doze parâmetros e, aplicando transformações afins e reescala do tempo, reduzimos esse número a cinco, sendo ainda um número grande para se trabalhar) usualmente subclasses são consideradas nas investigações realizadas. Quando características específicas são levadas em consideração, o número de parâmetros é reduzido e o estudo se torna possível. Nesta tese estudamos principalmente duas subfamílias de sistemas quadráticos: a primeira possuindo um nó triplo semielemental e a segunda possuindo uma selanó semi elemental finita e uma selanó semielemental infinita formada pela colisão de uma sela infinita com um nó infinito. Os diagramas de bifurcação para ambas as famílias são tridimensionais. A família tendo um nó triplo gera 28 retratos de fase topologicamente distintos, enquanto o fecho da família tendo as selasnós dentro do espaço de bifurcação de sua forma normal gera 417. Polinômios invariantes são usados para construir os conjuntos de bifurcação e os retratos de fase topologicamente distintos são representados no disco de Poincaré. Os conjuntos de bifurcação são a união de superfícies algébricas e superfícies cuja presença foi detectada numericamente. Ainda nesta tese, apresentamos todos os retratos de fase de um sistema diferencial conhecido como modelo do tipo SIS (sistema suscetívelinfectadosuscetível, muito comum na matemática aplicada) e a classificação dos sistemas quadráticos possuindo hipérboles invariantes. Ambos sistemas foram investigados usando de polinômios invariantes afins. / Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilberts 16th problem, are still open for this family. One of the goals of recent researchers is the topological classification of quadratic systems. As this attempt is not possible in the whole class due to the large number of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families with five parameters, which is still a large number), many subclasses are considered and studied. Specific characteristics are taken into account and this implies a decrease in the number of parameters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic systems: the first one possessing a finite semielemental triple node and the second one possessing a finite semielemental saddlenode and an infinite semielemental saddlenode formed by the collision of an infinite saddle with an infinite node. The bifurcation diagram for both families are tridimensional. The family having the triple node yields 28 topologically distinct phase portraits, whereas the closure of the family having the saddlenodes within the bifurcation space of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also present the analysis of a differential system known as SIS model (this kind of systems are easily found in applied mathematics) and the complete classification of quadratic systems possessing invariant hyperbolas.
|
32 |
Metrical Problems in Minkowski GeometryFankhänel, Andreas 19 October 2012 (has links) (PDF)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes.
In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors.
In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms.
Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.
|
33 |
Metrical Problems in Minkowski GeometryFankhänel, Andreas 07 June 2012 (has links)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes.
In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors.
In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms.
Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.:1 Introduction
2 On angular measures
3 Types of convex quadrilaterals
4 On conic sections
|
Page generated in 0.0248 seconds