Spelling suggestions: "subject:"minkowski plant"" "subject:"minkowski plans""
1 |
Deformações geométricas de curvas no plano Minkowski / Geometric deformations of curves in the Minkowski planeFrancisco, Alex Paulo 16 April 2019 (has links)
Neste trabalho, estendemos o método desenvolvido em (SALARINOGHABI, 2016),(SALARINOGHABI; TARI, 2017) para curvas no plano Minkowski. Tal método propõe um modo de estudar deformações de curvas planas levando em consideração a geometria das mesmas juntamente com suas singularidades. Abordamos detalhadamente todos os fenômenos locais que ocorrem genericamente em famílias de curvas a 2-parâmetros. Em cada caso, obtemos a geometria da curva deformada, ou seja, informações a respeito de inflexões, vértices e pontos lightlike. Obtemos também o comportamento da evoluta/cáustica de uma curva em pontos especiais e as bifurcações que podem aparecer ao deformá-la. Além disso, a fim de obter as deformações genéricas em uma inflexão lightlike de ordem 2, também classificamos submersões de R3 em R por meio de difeomorfismos na fonte que preservam a swallowtail e, utilizando tal classificação, estudamos a geometria plana da swallowtail, a qual provém de seu contato com planos, o qual por sua vez é medido pelas singularidades da função altura sobre a swallowtail. / In this work, we extend the method developed in (SALARINOGHABI, 2016),(SALARINOGHABI; TARI, 2017) to curves in the Minkowski plane. The method proposes a way to study deformations of plane curves taking into consideration their geometry as well as their singularities. We deal in detail with all local phenomena that occur generically in 2-parameters families of curves. In each case, we obtain the geometry of the deformed curve, that is, information about inflections, vertices and lightlike points. We also obtain the behavior of the evolute/caustic of a curve at special points and the bifurcations that can occur when the curve is deformed. Moreover, in order to obtain the generic deformations at a lightlike inflection point of order 2, we also classify submersions from R3 to R by diffeomorphisms in the source that preserve the swallowtail and, using such classification, we study the flat geometry of the swallowtail, which comes from its contact with planes, which in turn is measured by the singularities of the height function on the swallowtail.
|
2 |
Curves in the Minkowski plane and Lorentzian surfacesSaloom, Amani Hussain January 2012 (has links)
We investigate in this thesis the generic properties of curves in the Minkowski plane R2 1 and of smooth Lorentzian surfaces. The generic properties of curves in R2 1 are obtained by studying the contacts of curves in R2 1 with lines and pseudo-circles. These contacts are captured by the singularities of the families of height and distancesquared functions on the curves. On the other hand, the generic properties of smooth Lorentzian surfaces are obtained by studying certain Binary Differential Equations defined on the surfaces.
|
3 |
Geometry of Minkowski Planes and Spaces -- Selected TopicsWu, Senlin 03 February 2009 (has links) (PDF)
The results presented in this dissertation refer to the geometry of Minkowski
spaces, i.e., of real finite-dimensional Banach spaces.
First we study geometric properties of radial projections of
bisectors in Minkowski spaces, especially the relation between the
geometric structure of radial projections and Birkhoff
orthogonality. As an application of our results it is shown that for
any Minkowski space there exists a number, which plays somehow the
role that $\sqrt2$ plays in Euclidean space. This number is referred
to as the critical number of any Minkowski space. Lower and upper
bounds on the critical number are given, and the cases when these
bounds are attained are characterized. Moreover, with the help of
the properties of bisectors we show that a linear map from a normed
linear space $X$ to another normed linear space $Y$ preserves
isosceles orthogonality if and only if it is a scalar multiple of a
linear isometry.
Further on, we examine the two tangent segments from any exterior
point to the unit circle, the relation between the length of a chord
of the unit circle and the length of the arc corresponding to it,
the distances from the normalization of the sum of two unit vectors
to those two vectors, and the extension of the notions of
orthocentric systems and orthocenters in Euclidean plane into
Minkowski spaces. Also we prove theorems referring to chords of
Minkowski circles and balls which are either concurrent or parallel.
All these discussions yield many interesting characterizations of
the Euclidean spaces among all (strictly convex) Minkowski spaces.
In the final chapter we investigate the relation between the length
of a closed curve and the length of its midpoint curve as well as
the length of its image under the so-called halving pair
transformation. We show that the image curve under the halving pair
transformation is convex provided the original curve is convex.
Moreover, we obtain several inequalities to show the relation
between the halving distance and other quantities well known in
convex geometry. It is known that the lower bound for the geometric
dilation of rectifiable simple closed curves in the Euclidean plane
is $\pi/2$, which can be attained only by circles. We extend this
result to Minkowski planes by proving that the lower bound for the
geometric dilation of rectifiable simple closed curves in a
Minkowski plane $X$ is analogously a quarter of the circumference of
the unit circle $S_X$ of $X$, but can also be attained by curves
that are not Minkowskian circles. In addition we show that the lower
bound is attained only by Minkowskian circles if the respective norm
is strictly convex. Also we give a sufficient condition for the
geometric dilation of a closed convex curve to be larger than a
quarter of the perimeter of the unit circle.
|
4 |
Geometry of Minkowski Planes and Spaces -- Selected TopicsWu, Senlin 13 November 2008 (has links)
The results presented in this dissertation refer to the geometry of Minkowski
spaces, i.e., of real finite-dimensional Banach spaces.
First we study geometric properties of radial projections of
bisectors in Minkowski spaces, especially the relation between the
geometric structure of radial projections and Birkhoff
orthogonality. As an application of our results it is shown that for
any Minkowski space there exists a number, which plays somehow the
role that $\sqrt2$ plays in Euclidean space. This number is referred
to as the critical number of any Minkowski space. Lower and upper
bounds on the critical number are given, and the cases when these
bounds are attained are characterized. Moreover, with the help of
the properties of bisectors we show that a linear map from a normed
linear space $X$ to another normed linear space $Y$ preserves
isosceles orthogonality if and only if it is a scalar multiple of a
linear isometry.
Further on, we examine the two tangent segments from any exterior
point to the unit circle, the relation between the length of a chord
of the unit circle and the length of the arc corresponding to it,
the distances from the normalization of the sum of two unit vectors
to those two vectors, and the extension of the notions of
orthocentric systems and orthocenters in Euclidean plane into
Minkowski spaces. Also we prove theorems referring to chords of
Minkowski circles and balls which are either concurrent or parallel.
All these discussions yield many interesting characterizations of
the Euclidean spaces among all (strictly convex) Minkowski spaces.
In the final chapter we investigate the relation between the length
of a closed curve and the length of its midpoint curve as well as
the length of its image under the so-called halving pair
transformation. We show that the image curve under the halving pair
transformation is convex provided the original curve is convex.
Moreover, we obtain several inequalities to show the relation
between the halving distance and other quantities well known in
convex geometry. It is known that the lower bound for the geometric
dilation of rectifiable simple closed curves in the Euclidean plane
is $\pi/2$, which can be attained only by circles. We extend this
result to Minkowski planes by proving that the lower bound for the
geometric dilation of rectifiable simple closed curves in a
Minkowski plane $X$ is analogously a quarter of the circumference of
the unit circle $S_X$ of $X$, but can also be attained by curves
that are not Minkowskian circles. In addition we show that the lower
bound is attained only by Minkowskian circles if the respective norm
is strictly convex. Also we give a sufficient condition for the
geometric dilation of a closed convex curve to be larger than a
quarter of the perimeter of the unit circle.
|
5 |
Metrical Problems in Minkowski GeometryFankhänel, Andreas 19 October 2012 (has links) (PDF)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes.
In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors.
In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms.
Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.
|
6 |
Géométrie et dynamique des espaces de configuration / Geometry and dynamics of configuration spacesKourganoff, Mickaël 04 December 2015 (has links)
Cette thèse est divisée en trois parties. Dans la première, on étudie des systèmes articulés (mécanismes formés de tiges rigides) dont l'espace ambiant n'est pas le plan, mais diverses variétés riemanniennes. On étudie la question de l'universalité des mécanismes : cette notion correspond à l'idée que toute courbe serait tracée par un sommet d'un mécanisme, et que toute variété différentiable serait l'espace de configuration d'un mécanisme. On étend les théorèmes d'universalité au plan de Minkowski, au plan hyperbolique et enfin à la sphère.Toute surface dans R^3 peut être aplatie selon l'axe des z, et la surface aplatie s'approche d'une table de billard dans R^2. Dans la seconde partie, on montre que, sous certaines hypothèses, le flot géodésique de la surface converge localement uniformément vers le flot de billard. De plus, si le billard est dispersif, les propriétés chaotiques du billard remontent au flot géodésique : on montre qu'il est alors Anosov. En appliquant ce résultat à la théorie des systèmes articulés, on obtient un nouvel exemple de systèmes articulé Anosov, comportant cinq tiges.Dans la troisième partie, on s'intéresse aux variétés munies de connexions localement métriques, c'est-à-dire de connexions qui sont localement des connexions de Levi-Civita de métriques riemanniennes ; on donne dans ce cadre un analogue du théorème de décomposition de De Rham, qui s'applique habituellement aux variétés riemanniennes. Dans le cas où une telle connexion préserve une structure conforme, on montre que cette décomposition comporte au plus deux facteurs ; de plus, lorsqu'il y a exactement deux facteurs, l'un des deux est l'espace euclidien R^q. La démonstration des résultats de cette partie passe par l'étude des feuilletages munis d'une structure de similitude transverse. Sur ces feuilletages, on montre un résultat de rigidité qui peut être vu indépendamment des autres: ils sont soit transversalement plats, soit transversalement riemanniens. / This thesis is divided into three parts. In the first part, we study linkages (mechanisms made of rigid rods) whose ambiant space is no longer the plane, but various Riemannian manifolds. We study the question of the universality of linkages: this notion corresponds to the idea that every curve would be traced out by a vertex of some linkage, and that any differentiable manifold would be the configuration space of some linkage. We extend universality theorems to the Minkowski plane, the hyperbolic plane, and finally the sphere.Any surface in R^3 can be flattened with respect to the z-axis, and the flattened surface gets close to a billiard table in R^2. In the second part, we show that, under some hypotheses, the geodesic flow of the surface converges locally uniformly to the billiard flow. Moreover, if the billiard is dispersing, the chaotic properties of the billiard also apply to the geodesic flow: we show that it is Anosov in this case. By applying this result to the theory of linkages, we obtain a new example of Anosov linkage, made of five rods.In the third part, we first consider manifolds with locally metric connections, that is, connections which are locally Levi-Civita connections of Riemannian metrics; we give in this framework an analog of De Rham's decomposition theorem, which usually applies to Riemannian manifolds. In the case such a connection also preserves a conformal structure, we show that this decomposition has at most two factors; moreover, when there are exactly two factors, one of them is the Euclidean space R^q. The proofs of the results of this part use foliations with transverse similarity structures. On these foliations, we give a rigidity theorem of independant interest: they are either transversally flat, or transversally Riemannian.
|
7 |
Metrical Problems in Minkowski GeometryFankhänel, Andreas 07 June 2012 (has links)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes.
In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors.
In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms.
Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.:1 Introduction
2 On angular measures
3 Types of convex quadrilaterals
4 On conic sections
|
Page generated in 0.0629 seconds