Spelling suggestions: "subject:"géométrie conforme"" "subject:"éométrie conforme""
1 |
Géométrie de Cartan et pré-géodésiques de type lumièreFrancoeur, Dominik January 2014 (has links)
Après un survol de la théorie des géométries de Klein, nous présentons les rudiments de la géométrie de Cartan, qui généralise celle de Klein de la même manière que la géométrie riemannienne généralise la géométrie euclidienne. Ensuite, nous présentons la correspondance entre les géométries pseudo-riemanniennes et les géométries de Cartan sans torsion modélisées sur l'espace pseudo-euclidien. Nous utilisons cette correspondance pour montrer dans le langage de la géométrie de Cartan que les pré-géodésiques de type lumière d'une variété pseudo-riemannienne sont les mêmes pour toutes les métriques pseudo-riemanniennes dans la même classe d'équivalence conforme. Enfin, nous obtenons une seconde preuve de ce résultat, cette fois-ci en utilisant la correspondance entre les géométries conformes et les géométries de Cartan normales modélisées sur l'univers d'Einstein.
|
2 |
Géométrie de Cartan et pré-géodésiques de type lumièreFrancoeur, Dominik January 2014 (has links)
Après un survol de la théorie des géométries de Klein, nous présentons les rudiments de la géométrie de Cartan, qui généralise celle de Klein de la même manière que la géométrie riemannienne généralise la géométrie euclidienne. Ensuite, nous présentons la correspondance entre les géométries pseudo-riemanniennes et les géométries de Cartan sans torsion modélisées sur l'espace pseudo-euclidien. Nous utilisons cette correspondance pour montrer dans le langage de la géométrie de Cartan que les pré-géodésiques de type lumière d'une variété pseudo-riemannienne sont les mêmes pour toutes les métriques pseudo-riemanniennes dans la même classe d'équivalence conforme. Enfin, nous obtenons une seconde preuve de ce résultat, cette fois-ci en utilisant la correspondance entre les géométries conformes et les géométries de Cartan normales modélisées sur l'univers d'Einstein.
|
3 |
Les surfaces croches de l'univers d'EinsteinLareau-Dussault, Rosemonde January 2012 (has links)
Dans ce mémoire, on introduit l'univers d'Einstein et on présente plusieurs façons conceptuelles et paramétriques de représenter cet espace. On présente ensuite différents objets de l'univers d'Einstein. L'accent est mis sur la visualisation de ces objets en dimension deux et trois. Finalement, on décrit les surfaces croches. Les surfaces croches servent à borner des domaines fondamentaux, de la même façon que les surfaces équidistantes le font en géométrie euclidienne. Le but de ce mémoire est de présenter certaines propriétés des surfaces croches. En particulier, on montre qu'elles ont deux côtés. Si ce n'était pas le cas, il serait impossible de trouver des surfaces croches disjointes.
|
4 |
Le groupe conforme des structures pseudo-riemanniennes / The conformal group of pseudo-Riemannian structuresPecastaing, Vincent 12 December 2014 (has links)
Cette thèse a pour objet principal l'étude des structures pseudo-riemanniennes et de leurs groupes de transformations conformes, locales et globales. On cherche à obtenir des informations générales sur la structure du groupe conforme d'une variété pseudo-riemannienne compacte de dimension au moins 3, et on s'intéresse également à la géométrie et la dynamique des actions conformes de groupes de Lie sur de telles structures. L'essentiel des résultats présentés en géométrie conforme se situe en signature lorentzienne (1,n-1).Le point de vue qui est adopté ici est d'interpréter une structure conforme de dimension au moins 3 comme étant la donnée d'une géométrie de Cartan modelée sur l'univers d'Einstein de même signature. Ces structures géométriques, introduites par Élie Cartan, sont rigides et leurs symétries locales ont des propriétés remarquables. Nous retrouvons dans ce contexte des résultats formulés par Mikhaïl Gromov à la fin des années 1980, et les mettons en œuvre sur le cas particulier de la géométrie de Cartan définie par une structure conforme. / The main object of this thesis is the study of pseudo-Riemannian structures and their local and global conformal transformation groups. The purpose is to obtain general informations about the conformal group of a compact pseudo-Riemannian manifold of dimension greater than or equal to 3, and we also study dynamical and geometrical properties of conformal Lie group actions on such structures. The largest part of the result that are presented in this work are formulated in the (1,n-1) Lorentz signature.The approach we have chosen here to study a conformal structure is to work with its associated normal Cartan geometry modeled on the Einstein universe with same signature. These geometric structures, introduced by Élie Cartan, are rigid and their local automorphisms have nice behaviours. We formulate in this context results of Mikhaïl Gromov, that go back to the late 1980', and use them in the particular case of the normal Cartan geometry associated to a conformal structure.
|
5 |
Study of cohomogeneity one three dimensional Einstein universe / Etudes des espaces d'Einstein tridimensionnels de cohomogénéité unHassani, Masoud 04 July 2018 (has links)
Dans cette thèse des actions conformes de cohomogénéité un sur l'univers d'Einstein tridimensionel sont classifiées. Notre stratégie est d'établir dans un premier temps quel peut être le groupe de transformations conformes impliqué, à conjugaison près. Nous décrivons aussi la topologie et la nature causale des orbites d'une telle action. / In this thesis, the conformal actions of cohomogeneity one on the three-dimensional Einstein universe are classified. Our strategy in this study is to determine the representation of the acting group in the group of conformal transformations of Einstein universe up to conjugacy. Also, we describe the topology and the causal character of the orbits induced by cohomogeneity one actions in Einstein universe.
|
6 |
Espace-temps globalement hyperboliques conformément platsRossi Salvemini, Clara 24 May 2012 (has links) (PDF)
Les espace-temps conformément plats de dimension supérieure ou égal à 3 sont des variétés localement modelées l'espace-temps d'Einstein où il agit la composante connexe de l'identité du groupe des difféomorfismes conformes.Un espace-temps M est globalement hyperbolique s'il admet une hypersurface S de type espace qui est rencontrée une et une seule fois par toute courbe causale de M. L'hypersurface S est alors dite hypersurface de Cauchy de M.L'ensemble des espace-temps globalement hyperboliques conformément plats, identifiés à difféomorphisme conforme près, est naturellement muni d'une relation d'ordre partielle: on dit que N étends M s'il existe un plongement conforme de M dans N tel que l'image de toute hypersurface de Cauchy de M est une hypersurface de Cauchy de N. Les éléments maximaux par rapport à cette relation d'ordre sont appelés espace-temps maximaux.Le premier résultat qu'on a prouvé est l'existence et unicité de l'extension maximale pour un espace-temps conformément plat globalement hyperbolique donné. Ce résultat généralise un théorème de Choquet-Bruhat et Geroch relatif aux espace-temps solutions des équation d'Einstein.L'unicité de l'extension maximale permet de prouver le résultat suivant:Théorème:En dimension supérieur ou égal à 3, l'espace d'Einstein est le seul espace-temps conformément plat maximal simplement connexe admettant une hypersurface de Cauchy compacte.Si l'hypersurface de Cauchy S du revêtement universel d'un espace-temps M est compacte on obtient donc que M est un quotient fini de l'espace d'Einstein. La structure des géodésiques de l'espace d'Einstein et l'unicité de l'extension maximale permettent de prouver :Théorème:Soit M un espace-temps conformément plat maximal de dimension supérieur ou égal à 3, qui contient deux géodésiques lumières distinctes, librement homotopes et ayant les mêmes extrémités. Alors M est un quotient fini de l'espace d'Einstein.Dans le cas où l'hypersurface S' du revêtement universel M' de M est non compacte on montre chaque point p de M' est déterminé par le compact de S 'constitué par l'intersection de son passé causal ou de son futur causal avec l'hypersurface S', suivant que p appartient au passé ou au futur de S'. Onappelle ce compact l'ombre de p sur S'. L'espace-temps M' s'identifie donc à un sous-ensemble des compacts de S'.Ce point de vue permet d'avoir une compréhension plus profonde de la maximalité d'un espace-temps. En fait on a différentes notions de maximalité :un espace-temps pourrait être maximal parmi les espace-temps conformément plats mais avoir un majorant qui n'est pas conformément plat, i.e. il pourrait exister un plongement conforme dans un espace-temps globalement hyperbolique qui ne soit pas conformément plat.Grâce à la notion d'ombre, on prouve que la structure causale induite sur la frontière de Penrose du revêtement universel d'un espace-temps conformément plat permet de caractériser les espace-temps maximaux parmi tous les espace-temps globalement hyperboliques, on obtient:Théorème:Tout espace-temps globalement hyperbolique conformément plat M qui est maximal parmi les espace-temps globalement hyperbolique conformément plats est aussi maximal parmi tous les espace-temps globalement hyperboliques.On conclut avec une discussion détaillée sur la maximalité des espaces-temps globalement hyperboliques maximaux parmi les espace-temps à courbure constante, suivant le signe de la courbure: lorsque la courbure est négative ou nulle, l'espace-temps est maximal aussi parmi tous les espace-temps globalement hyperboliques, mais cela n'est jamais vrai lorsque la courbure est strictement positive
|
7 |
Invariants asymptotiques en géométrie conforme et géométrie CR / Asymptotic invariants in conformal and CR geometryMichel, Benoît 08 November 2010 (has links)
Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géométrie CR.La première partie est consacrée à la géométrie conforme. Nous calculons les premiers termes du développement asymptotique de la fonction de Green des opérateurs GJMS au voisinage de la diagonale, pour un facteur conforme normal au sens de Lee et Parker. Nous montrons que le terme constant de ce développement est covariant sous un changement de facteur conforme normal. Nous le rattachons à un invariant à l'infini de type masse ADM d'une métrique non compacte obtenue par projection stéréographique.La deuxième partie est consacrée à la géométrie CR. Nous calculons les premiers termes du développement asymptotique de la fonction de Green de l'opérateur de Yamabe CR au voisinage de sa singularité,dans le cas CR sphérique, et en dimension 3 dans une carte CR-normale au sens de Jerison et Lee, lorsque la constante de Yamabe-CR est strictement positive. Nous montrons la covariance pseudo-conforme du terme constant sous les changements de cartes respectivement CR-sphériques et CR-normales.La troisième partie donne une explication formelle à une annulation algébrique sur laquelle repose la définition de plusieurs invariants à l'infini de type masse ADM, qui n'avait pu jusqu'à présent qu'être constatée par un calcul direct. / In this thesis we study the use of some asymptotic invariants in conformal and CR geometry.The first chapter is devoted to conformal geometry. We compute an asymptotic expansion ofthe Green function of GJMS operators near the diagonal, for a normal conformal factorin the sense of Lee and Parker. We show that the constant term in this expansion is covariant through achange of normal conformal factor. We relate it to an invariant at infinity of the type of the ADM massof a non-compact metric obtained by some kind of stereographic projection.In the second chapter we study CR geometry. We compute the first terms of the asymptotic expansion of the Greenfunction of the Yamabe-CR operator near its singularity, when the Yamabe-CR constant is positive, in the CR-sphericalcase, and in dimension 3 in a CR-normal chart in the sense of Jerison and Lee.We show the pseudo-conformal covariance of the constant term in this asymptotic expansion through a change of spherical chart andof CR-normal chart respectively.In the third chapter we give a formal explanation to an algebraic cancellationon which the defintion of some invariants at infinity such as the ADM mass relies.
|
8 |
Opérateurs de Dirac sur les sous-variétésGINOUX, Nicolas 10 September 2002 (has links) (PDF)
Les travaux effectués dans cette thèse portent sur l'étude du spectre de deux opérateurs de Dirac définis sur une sous-variété. Dans un premier temps, nous minorons la plus petite valeur propre d'un opérateur canoniquement associé à l'opérateur de Dirac-Witten. Nous montrons par la suite que l'égalité dans ces minorations ne peut être atteinte que si la sous-variété admet un spineur dit de Killing tordu. Dans un second temps, nous majorons les petites valeurs propres de l'opérateur de Dirac de la sous-variété tordu par son fibré normal. Complétant les travaux de C. Bär pour les hypersurfaces de l'espace hyperbolique, nous donnons de nouvelles estimations pour les hypersurfaces de variétés admettant des spineurs-twisteurs. Nous étendons enfin ces résultats aux sous-variétés de certaines variétés kählériennes. L'existence de spineurs de Killing kählériens sur de telles variétés permet d'estimer les petites valeurs propres des sous-variétés CR. Nous obtenons comme conséquence un théorème de comparaison de valeurs propres pour les sous-variétés kählériennes de l'espace projectif complexe.
|
9 |
Espace-temps globalement hyperboliques conformément plats / Globally hyperbolic conformally flat spacetimesRossi Salvemini, Clara 24 May 2012 (has links)
Les espace-temps conformément plats de dimension supérieure ou égal à 3 sont des variétés localement modelées l'espace-temps d'Einstein où il agit la composante connexe de l'identité du groupe des difféomorfismes conformes.Un espace-temps M est globalement hyperbolique s'il admet une hypersurface S de type espace qui est rencontrée une et une seule fois par toute courbe causale de M. L'hypersurface S est alors dite hypersurface de Cauchy de M.L'ensemble des espace-temps globalement hyperboliques conformément plats, identifiés à difféomorphisme conforme près, est naturellement muni d'une relation d'ordre partielle: on dit que N étends M s'il existe un plongement conforme de M dans N tel que l'image de toute hypersurface de Cauchy de M est une hypersurface de Cauchy de N. Les éléments maximaux par rapport à cette relation d'ordre sont appelés espace-temps maximaux.Le premier résultat qu'on a prouvé est l'existence et unicité de l'extension maximale pour un espace-temps conformément plat globalement hyperbolique donné. Ce résultat généralise un théorème de Choquet-Bruhat et Geroch relatif aux espace-temps solutions des équation d'Einstein.L'unicité de l'extension maximale permet de prouver le résultat suivant:Théorème:En dimension supérieur ou égal à 3, l'espace d'Einstein est le seul espace-temps conformément plat maximal simplement connexe admettant une hypersurface de Cauchy compacte.Si l'hypersurface de Cauchy S du revêtement universel d'un espace-temps M est compacte on obtient donc que M est un quotient fini de l'espace d'Einstein. La structure des géodésiques de l'espace d'Einstein et l'unicité de l'extension maximale permettent de prouver :Théorème:Soit M un espace-temps conformément plat maximal de dimension supérieur ou égal à 3, qui contient deux géodésiques lumières distinctes, librement homotopes et ayant les mêmes extrémités. Alors M est un quotient fini de l'espace d'Einstein.Dans le cas où l'hypersurface S' du revêtement universel M' de M est non compacte on montre chaque point p de M' est déterminé par le compact de S 'constitué par l'intersection de son passé causal ou de son futur causal avec l'hypersurface S', suivant que p appartient au passé ou au futur de S'. Onappelle ce compact l'ombre de p sur S'. L'espace-temps M' s'identifie donc à un sous-ensemble des compacts de S'.Ce point de vue permet d'avoir une compréhension plus profonde de la maximalité d'un espace-temps. En fait on a différentes notions de maximalité :un espace-temps pourrait être maximal parmi les espace-temps conformément plats mais avoir un majorant qui n'est pas conformément plat, i.e. il pourrait exister un plongement conforme dans un espace-temps globalement hyperbolique qui ne soit pas conformément plat.Grâce à la notion d'ombre, on prouve que la structure causale induite sur la frontière de Penrose du revêtement universel d'un espace-temps conformément plat permet de caractériser les espace-temps maximaux parmi tous les espace-temps globalement hyperboliques, on obtient:Théorème:Tout espace-temps globalement hyperbolique conformément plat M qui est maximal parmi les espace-temps globalement hyperbolique conformément plats est aussi maximal parmi tous les espace-temps globalement hyperboliques.On conclut avec une discussion détaillée sur la maximalité des espaces-temps globalement hyperboliques maximaux parmi les espace-temps à courbure constante, suivant le signe de la courbure: lorsque la courbure est négative ou nulle, l'espace-temps est maximal aussi parmi tous les espace-temps globalement hyperboliques, mais cela n'est jamais vrai lorsque la courbure est strictement positive / As a consequence of the Lorentzian version of Liouville’s Theorem, everyconformally flat space-time of dimension 3 is a (Ein1,n,O0(2, n + 1))-manifold. The Einstein’s space-time Ein1,n is the space Sn × S1 with theconformal class of the metric d2−dt2, where d2 and dt2 are the canonicalRiemannian metrics of Sn and R. The group O0(2, n+1) is the group of theconformal diffeomorphisms of Ein1,n whose action preserve the orientationand the time-orientation of Ein1,n. A space-time M is globally hyperbolicif it contains a spacelike hypersurface which intersects every inextensiblecausal curve of M exactly in one point. As a consequence M is not compact.The hypersurface is called a Cauchy hypersurface of M. Geroch’s Theorem([?]) say that if M is globally hyperbolic, then M is homeomorphic to×R. There is a naturally defined partial order on the set of globally hyperbolicspace-times (up to conformal diffeomorphism) : M M0 if does existsa conformal embedding f : M ,! M0 which sends Cauchy hypersurfaces ofM to Cauchy hypersurfaces of M0 (f is called a Cauchy-embedding ). Wecall C-maximal space-times the maximal elements for this partial order onthe set of globally hyperbolic space-times. We can restrict the partial orderto the subset of conformally flat space-times : in this case we call themaximal elements C0-maximal space-times. The first result of the thesis isa generalization of a Theorem proved by Choquet-Bruhat and Geroch in[?] : let M be a globally hyperbolic conformally flat space-time. Then thereis a globally hyperbolic conformally flat C0-maximal space-time N and aCauchy-embedding f : M ,! N. The space-time N is unique up to conformaldiffeomorphisms.The uniqueness of the C0-maximal extension imply that every globally hyperbolicconformally flat simply connected C0-maximal space-time (of dimension3) with a compact Cauchy hypersurface is conformally diffeomorphicto gEin1,n.In the second part of the thesis we study the injectivity of the developingmap of a globally hyperbolic conformally flat space-time M looking at theshape of its the causal boundary.We say that two points p, q are conjugatedin a space-time M if there are two different lightlike geodesics and whichstart at p and meet at q, such that and don’t intersect between p and q.The most remarkable result of this part is : let M a globally hyperbolicconformally flat C0-maximal space-time. If fM has two conjugated pointsthen fM ' gEin1,n. In particular M is a finite quotient of gEin1,n.As a consequence of this result we obtain that the developing map of Mrestricted to the chronological past and future of every point is injective.In the last part of the thesis we give an abstract construction of the Cmaximalextension for a given conformally flat globally hyperbolic spacetime.The idea is that a globally hyperbolic space-time is completely determinedby one of his Cauchy hypersurfaces. This result helps to understandhow to relate the different notions of maximality. In particular we provethat every conformally flat globally hyperbolic space-time M which is C0-maximal is also C-maximal.
|
10 |
Champs de Maxwell en espace-temps de Reissner - Nordstr∫m- De Sitter : décroissance et scattering conforme / Maxwell field on the Reissner-Nordst∫rm-De Sitter manifold : decay and conformal scatteringMokdad, Mokdad 30 September 2016 (has links)
Nous étudions les champs de Maxwell à l'extérieur de trous noirs de Reissner-Nordstrom-de Sitter. Nous commençons par étudier la géométrie de ces espaces-temps : nous donnons une condition sous laquelle la métrique admet trois horizons puis dans ce cadre nous construisons l'extension analytique maximale d'un trou noir de Reissner-Nordstrom-de Sitter. Nous donnons ensuite une description générale des champs de Maxwell en espace-temps courbe, de leur décomposition en composantes spinorielle ainsi que de leur énergie. La première étude analytique établit la décroissance ponctuelle de champs de Maxwell à l'extérieur d'un trou noir de Reissner-Nordstrom-de Sitter ainsi que la décroissance uniforme de l'énergie sur un hyperboloïde qui s'éloigne dans le futur. Ce chapitre utilise des méthodes de champs de vecteurs (estimations d'énergie géométriques) dans l'esprit des travaux de Pieter Blue. Enfin nous construisons une théorie du scattering conforme pour les champs de Maxwell à l'extérieur du trou noir. Ceci consiste en la résolution du problème de Goursat pour les champs de Maxwell à la frontière isotrope de l'extérieur du trou noir, constituée des horizons du trou noir et horizons cosmologiques futurs et passés. Les estimations de décroissance uniforme de l'énergie sont cruciales dans cette partie. / We study Maxwell fields on the exterior of Reissner-Nordstrom-de Sitter black holes. We start by studying the geometry of these spacetimes: we give the condition under which the metric admits three horizons and in this case we construct the maximal analytic extension of the Reissner-Nordstrom-de Sitter black hole. We then give a general description of Maxwell fields on curves spacetimes, their decomposition into spin components, and their energies. The first result establishes the pointwise decay of the Maxwell field in the exterior of a Reissner-Nordstrom-de Sitter black hole, as well as the uniform decay of the energy flux across a hyperboloid that recedes in the future. This chapter uses the vector fields methods (geometric energy estimates) in the spirit of the work of Pieter Blue. Finally, we construct a conformal scattering theory for Maxwell fields in the exterior of the black hole. This amounts to solving the Goursat problem for Maxwell fields on the null boundary of the exterior region, consisting of the future and past black hole and cosmological horizons. The uniform decay estimates of the energy are crucial to the construction of the conformal scattering theory.
|
Page generated in 0.0973 seconds