• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algèbre de Lie et cinématique des mécanismes en boucles fermées

Hao, Kuangrong 15 September 1995 (has links) (PDF)
L'objectif de cette thèse est l'étude du comportement cinématique des mécanismes bouclés de corps rigides. Le modèle mathématique d'un tel mécanisme est l'équation de fermeture f (q1,..., qm) = e où q1,...,qm sont des coordonnées articulaires et f est une fonction analytique à valeur dans un groupe de Lie. L'étude des propriétés cinématiques se ramène à celle de l'ensemble des configurations admissibles f-1 ( e ) qui est une sous-variété dans le cas régulier où f est une subimmersion. Par contre, l'étude est beaucoup plus difficile lorsque f possède des singularités. On utilise comme outil fondamental le formalisme de la géométrie différentielle des groupes de Lie pour le groupe des déplacements et la structure de Δ - module de son algèbre de Lie, ceci permet une écriture simple et condensée des équations de la cinématique et facilite leur traitement symbolique. Nous avons montré que l'analyse au deuxième ordre de l'équation de fermeture est suffisante pour les mécanismes 6R paradoxaux. Un algorithme d'évaluation du rang d'un ensemble de champs antisymétriques (équiprojectifs) est développé et est utilisé pour étudier les processus de génération des sous algèbres de Lie. Nous avons proposé également des méthodes de cinématique inverse pour des mécanismes spatiaux, ces méthodes permettent de résoudre l'équation de fermeture indépendamment d'un choix des coordonnées et d'obtenir des conditions nécessaires et suffisantes de résolution : notamment, la méthode simplifie considérablement la procédure de résolution pour les mécanismes 6R spatiaux.
2

Contribution à la modélisation dynamique des systèmes articulés. Bases mathématiques et outils informatiques

Hamlili, Ali 17 September 1993 (has links) (PDF)
Dans cette thèse nous apportons deux contributions importantes par l'outil de l'abstraction mathématique : - La première contribution concerne la mécanique et plus précisément la modélisation dynamique des systèmes articulés. L'abstraction mathématique par la théorie des groupes et algèbres de Lie coordonnée avec un usage judicieux de la notion des nombres duaux permet d'élaborer un langage très commode où les modèles géométriques et dynamiques des systèmes mécaniques poly-articulés s'expriment sous une forme syntaxique relativement simple (malgré la complexité du système). De nouvelles méthodes pour la description des configurations des systèmes multicorps et un algorithme récurrent original (et très efficace) sont alors développés grâce à ce langage. - La seconde contribution concerne le domaine informatique en calcul formel. Elle est basée sur le typage algébrique, les techniques de réécriture et la génération automatique des codes (programmation assistée par ordinateur). Les problèmes soulevés nécessitent de nouvelles architectures de systèmes de calcul formel. Dans cet ordre d'idées, un prototype de système de calcul formel (SURVEYOR) basé sur la réécriture typée et une extension (MEDUSA MF77) du système Maple ont été réalisés. Un outil informatique pour la génération automatique des codes Fortran et Maple des schémas de calcul optimisés relatifs à notre formulation dynamique est développé à l'aide du système MEDUSA MF77. Plusieurs applications en calcul symbolique et en robotique sont, par ailleurs, présentées en annexes sous forme de réalisations informatiques des aspects théoriques traités.
3

Géométrie et dynamique des espaces de configuration / Geometry and dynamics of configuration spaces

Kourganoff, Mickaël 04 December 2015 (has links)
Cette thèse est divisée en trois parties. Dans la première, on étudie des systèmes articulés (mécanismes formés de tiges rigides) dont l'espace ambiant n'est pas le plan, mais diverses variétés riemanniennes. On étudie la question de l'universalité des mécanismes : cette notion correspond à l'idée que toute courbe serait tracée par un sommet d'un mécanisme, et que toute variété différentiable serait l'espace de configuration d'un mécanisme. On étend les théorèmes d'universalité au plan de Minkowski, au plan hyperbolique et enfin à la sphère.Toute surface dans R^3 peut être aplatie selon l'axe des z, et la surface aplatie s'approche d'une table de billard dans R^2. Dans la seconde partie, on montre que, sous certaines hypothèses, le flot géodésique de la surface converge localement uniformément vers le flot de billard. De plus, si le billard est dispersif, les propriétés chaotiques du billard remontent au flot géodésique : on montre qu'il est alors Anosov. En appliquant ce résultat à la théorie des systèmes articulés, on obtient un nouvel exemple de systèmes articulé Anosov, comportant cinq tiges.Dans la troisième partie, on s'intéresse aux variétés munies de connexions localement métriques, c'est-à-dire de connexions qui sont localement des connexions de Levi-Civita de métriques riemanniennes ; on donne dans ce cadre un analogue du théorème de décomposition de De Rham, qui s'applique habituellement aux variétés riemanniennes. Dans le cas où une telle connexion préserve une structure conforme, on montre que cette décomposition comporte au plus deux facteurs ; de plus, lorsqu'il y a exactement deux facteurs, l'un des deux est l'espace euclidien R^q. La démonstration des résultats de cette partie passe par l'étude des feuilletages munis d'une structure de similitude transverse. Sur ces feuilletages, on montre un résultat de rigidité qui peut être vu indépendamment des autres: ils sont soit transversalement plats, soit transversalement riemanniens. / This thesis is divided into three parts. In the first part, we study linkages (mechanisms made of rigid rods) whose ambiant space is no longer the plane, but various Riemannian manifolds. We study the question of the universality of linkages: this notion corresponds to the idea that every curve would be traced out by a vertex of some linkage, and that any differentiable manifold would be the configuration space of some linkage. We extend universality theorems to the Minkowski plane, the hyperbolic plane, and finally the sphere.Any surface in R^3 can be flattened with respect to the z-axis, and the flattened surface gets close to a billiard table in R^2. In the second part, we show that, under some hypotheses, the geodesic flow of the surface converges locally uniformly to the billiard flow. Moreover, if the billiard is dispersing, the chaotic properties of the billiard also apply to the geodesic flow: we show that it is Anosov in this case. By applying this result to the theory of linkages, we obtain a new example of Anosov linkage, made of five rods.In the third part, we first consider manifolds with locally metric connections, that is, connections which are locally Levi-Civita connections of Riemannian metrics; we give in this framework an analog of De Rham's decomposition theorem, which usually applies to Riemannian manifolds. In the case such a connection also preserves a conformal structure, we show that this decomposition has at most two factors; moreover, when there are exactly two factors, one of them is the Euclidean space R^q. The proofs of the results of this part use foliations with transverse similarity structures. On these foliations, we give a rigidity theorem of independant interest: they are either transversally flat, or transversally Riemannian.

Page generated in 0.0577 seconds