• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 20
  • 9
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 118
  • 19
  • 17
  • 17
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Application of Far Infrared Radiation and Ethanol Vapor as Alternative Treatment Methods for Reduction of Salmonella enterica Tennessee in Dried, Ground Spices

Nimitz Jr, Stephen Clark 24 May 2013 (has links)
The consumption of spiced food is steadily increasing, subsequently leading to increased incidence of spice-related food illnesses. Many outbreaks can be traced to human pathogens that can survive in low moisture content of spices, prompting development of additional inactivation treatments that reduce bacterial pathogens while maintaining spice quality. Spices are currently treated by fumigation with ethylene oxide, pasteurization with ionizing radiation, or steam treatment. However, these treatments exhibit flaws pertaining to consumer preference, regulatory issues, and quality degradation. In this study, two novel treatments were evaluated for reduction of Salmonella enterica Tennessee: far infrared radiation (FIR), a short time â " high temperature treatment, and pasteurization with ethanol vapor (EV). Both treatments were effective in reducing levels of Salmonella Tennessee between 3-5 logs. FIR treatment showed increased efficacy at longer treatment times with a maximum reduction of 5 log CFU/g in paprika at 24s. EV reduced Salmonella Tennessee by 3 log CFU/g within 120s when applied to inoculated paprika and black pepper without detrimentally affecting spice quality. However, the samples receiving FIR treatments suffered reductions in volatile content and color changes to the spices. High levels (up to 1% w/w) of residual ethanol were also detected on samples treated for 300s. Concluding, both treatment show similar results when comparing efficacy; however, based on the magnitude of change in volatile content associated with FIR being significantly greater than those samples receiving EV, FIR treatment requires additional research before recommending for use with dried, ground paprika, black pepper, or sage. / Master of Science
22

A parametric study of the validity of the weak-line and strong-line limits of infrared band absorption

Villeneuve, Pierre V. 12 March 2009 (has links)
A current version of the NASA band model was used to calculate the errors in the weakline and strong-line band absorption limits for a wide range of temperatures, pressures, path lengths, and species concentrations. The weak-line limit is valid under the condition 2u/β « 1. The strong-line limit is valid under the opposite conditions of the weak-line limit, i.e. 2u/β » 1. These two conditions are not always easily related to physical parameters such as temperature, pressure, path length, and species concentration. Therefore, the band model was used in a parametric study to calculate the weak-line limit and strong-line limit errors as a function of the temperature (100 K - 3000 K), pressure (0.0001 - 10.0 atm), path length (1 cm - 10 km), and species concentration (0.00033 - 1.0) for atmospheric and jet-exhaust-plume conditions. The results were generated in the form of spectral graphs (500 - 5000 cm⁻¹) of the limit error superimposed with the general-case absorptivity, and as contour graphs of the band-integrated limit error. The error in the contour graphs was plotted versus temperature and pressure for a given path length and species concentration. The contour graphs were generated for the 2.7 μm and 6.3 μm H₂O bands, the 2.7 μm and 4.3 μm CO₂ bands, and the medium wave (3.0 - 5.0 μm) and long wave (8.0 - 12.0 μm) bands. In the spectral graphs, the greatest error in both limits tends to occur in the core of the absorption bands when the absorption bands are small and in the band wings when the bands are relatively wide. The weak-line error generally occurs in localized pressure-temperature regimes in the contour graphs. The error is generally small at low and high temperatures and pressures, but can be significant at intermediate pressures and temperatures. The weak-line error also increases steadily with path length. The strong-line error, on the other hand, was not nearly as predictable as the weak-line error. At short path lengths, the strong-line error exhibits a linear behavior with respect to pressure. However, at longer path lengths, the strong-line error appeared saddle shaped as a function of both pressure and temperature. / Master of Science
23

UNDERSTANDING THE NON-CONTACT TEMPERATURE MEASUREMENT TECHNOLOGY

Jordan, Jorge, J. 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The ability to accurately measure the temperature of different materials has always been a challenge for the Instrumentation Engineer. The use the classic contact type temperature detector such as thermocouples or RTD’s (Resistance Temperature Detectors) has not always shown to be the best approach to obtain the expected measurement. When not used carefully in closed environments, thermocouples and RTD’s could report the environmental temperature rather than the temperature from the product under examination. They are also temperature limited and when needed for applications above those limits, very expensive and low reliable materials are necessary to do the job. The use of non-contact thermometers has become the preferred choice for such applications. They have also come as a solution for the difficulties involved in the temperature measurements of moving targets. The industry has used portable and spot type infrared thermometers for some time, but the demand for better and more precise measurements has brought an incredible number of new products to the market. By means of advanced electronics and new software developments these products are used to cope with the difficulties of acquiring challenging measurements. Some of the same demands have made necessary the use of non-contact temperature measurement devices on aircraft instrumentation applications. The use of these capabilities has allowed the data acquisition community to get valuable data that was very difficult if not impossible to obtain before. In spite of all these facts, this promising emerging technology demands very careful attention before it is put to good use. The many products and solutions available do not accurately address every problem and the selection of the wrong technology for a specific task can prove to be fatal. The use of non-contact temperature devices is not an easy “off the shelf” pick but rather an option that demands knowledge of the infrared measurement theory as well as a complete understanding of the material under observation. The intention of this paper is to provide a practical understanding on the non-contact temperature measurement methods to the Aircraft Instrumentation Engineer who has not benefited from the use of this exiting technology.
24

Nocturnal atmospheric infrared radiation in Montreal.

Fuggle, Richard Francis. January 1971 (has links)
No description available.
25

Investigation of mercury cadmium telluride heterostructures grown by molecular beam epitaxy

Sewell, Richard H. January 2005 (has links)
[Truncated abstract] Infrared radiation detectors find application in a wide range of military and civilian applications: for example, target identification, astronomy, atmospheric sensing and medical imaging. The greatest sensitivity, response speed, and wavelength range is offered by infrared detectors based on HgCdTe semiconductor material, the growth and characterisation of which is the subject of this thesis. Molecular Beam Epitaxy (MBE) is a versatile method of depositing layers of semiconductor material on a suitable crystalline substrate. In particular, MBE facilitates the growth of multilayer structures, thus allowing bandgap engineered devices to be realised. By modulating the bandgap within the device structure it is possible to improve the sensitivity or increase the operating temperature of photodetectors when compared to devices fabricated on single layer material. Furthermore, dual-band detectors may be fabricated using multi-layered HgCdTe material. The bulk of this thesis is concerned with the development of the MBE process for multilayer growth, from modelling of the growth process to characterisation of the material produced, and measurement of photoconductive devices fabricated on these wafers. In this thesis a previously published model of HgCdTe growth by MBE is reviewed in detail, and is applied to the growth of double layer heterostructures in order to determine the optimum method of changing the mole fraction between layers. The model has been used to predict the change in the temperature of the phase limit when the mole fraction and growth rate change suddenly as is the case during growth of an abrupt heterostructure. Two options for growth of an abrupt heterostructure were examined (a) modulating the CdTe flux and (b) modulating the Te flux. The change in the phase limit temperature between the layers was calculated as being 4:1±C for option (a) and 5:2±C for option (b) when growing a Hg(0:7)Cd(0:3)Te/Hg(0:56)Cd(0:44)Te heterostructure
26

Investigation of mercury cadmium telluride heterostructures grown by molecular beam epitaxy /

Sewell, Richard H. January 2005 (has links)
Thesis (Ph.D.)--University of Western Australia, 2005.
27

Temperature dependence of ceramic pyroeletric bolometer

Federer, James Clemens, January 1965 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1965. / eContent provider-neutral record in process. Description based on print version record. Bibliography: l. 48.
28

A physical-numerical model for inferring tropospheric structure from satellite radiation measurements

Smith, William L. January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1966. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
29

The role of infrared radiation in the evolution and ecology of anaerobic photosynthetic bacteria

Jensen, Brandi Jean. January 2008 (has links)
Thesis (M.S.)--University of Wyoming, 2008. / Title from PDF title page (viewed on August 3, 2009). Includes bibliographical references (p. 60-64).
30

End-gas temperatures, pressures, and reaction rates

Johnson, J. H. January 1964 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1964. / Typescript. Includes abstract, computer source code, and vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 328-337).

Page generated in 0.0522 seconds