Spelling suggestions: "subject:"[een] INSTRUMENTATION"" "subject:"[enn] INSTRUMENTATION""
381 |
MICROCONTROLLER BASED PCM ENCODERS FOR TELEMETRY INSTRUMENTATIONBorgen, Gary 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Pulse Code Modulation (PCM) Encoders used in Telemetry Instrumentation systems have traditionally been implemented using sequencer or state-machine based micro-architectures with distributed control and signal acquisition components. This architecture requires the use of many discrete electronic components and custom micro-code programming or state machine development for the control of the systems. The advent of relatively high-speed microcontrollers with embedded signal acquisition subsystems has brought about the ability to implement highly integrated PCM Encoder systems using fewer components and standardized programming methods. This paper will discuss sequencer based PCM encoders for background and then introduce the concept of Microcontroller Based PCM Encoders for Telemetry Instrumentation. Specific design examples will be introduced. Advantages and disadvantages of the two techniques will be discussed.
|
382 |
THE FUTURE OF ELECTROCARDIOGRAPH TELEMETRY SYSTEMSBurkhardt, Brian 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / The Electrocardiograph (EKG or ECG) measures electrical changes of tissue surrounding the heart to create a time-based representation of the physical operation of the heart. The purpose of this paper is to explore the future of ECG telemetry systems and how they are used in health care. The initial goal is to develop an inexpensive, efficient, and robust real-time ECG telemetry system. The future goal is to create a wireless network of miniature body sensors capable of measuring ECG data and other vital signs.
|
383 |
Introduction to XidML 3.0 An Open XML Standard for Flight Test Instrumentation DescriptionCooke, Alan, Herbepin, Christian 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / A few years ago XidML was introduced as an open XML standard for capturing the meta-data associated with flight test instrumentation (FTI). This meta-data schema was broken down into elements for Parameter (name, range, units, offset-binary), Instrument (name, serial number, misses-to loss), Package (bits per word, words per minor-frame, rate) and Link (name, type) and so on. XidML remains one of the only published schema for FTI meta-data and with XidML 3.0 many simplifications have been introduced along with support for nested tree structures and a single instrument schema allowing anyone to define the validation for instruments from any vendor. This paper introduces the XidML schema and describers the benefits of XidML 3.0 in particular. It begins by giving a brief description of what XidML is and describes its history and motivation. The paper then outlines the main differences between XidML-3.0 and earlier versions, and how the XidML schema has been further refined to meet the challenges faced by the FTI community. As an example of usage the FTIManager software developed at Eurocopter will be briefly presented in order to illustrate the XidML ability to describe a multi-vendor FTI configuration.
|
384 |
Excel Application Leverages XML to Configure Both Airborne Data Acquisition System and Ground Based Data Processing SystemDunnaville, Ted, Lindsey, Mark 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Flight test instrumentation/data processing environments consist of three components: * Airborne Data Acquisition System * Telemetry Control Room * Post Test Data Processing System While these three components require the same setup information, most often they are configured separately using a different tool for each system. Vendor supplied tools generally do not interact very well with hardware other than their own. This results in the multiple entry of the configuration information. Multiple entries of data for large complex systems are susceptible to data entry errors as well as version synchronization issues. This paper describes the successful implementation of a single Microsoft Excel based tool being used to program the instrumentation data acquisition hardware, the real-time telemetry system, and the post test data processing system on an active test program. This tool leverages the XML interfaces provided by vendors of telemetry equipment.
|
385 |
Networked Data Acquisition Systems for the Army FCS ProgramPesciotta, Eric, Roach, John, Sadia, Nathan, Yang, Hsueh-szu 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / Teletronics Technology Corp. has been involved in the research and development of networked data acquisition systems for use in airborne instrumentation for several years. Recently, TTC successfully applied the advanced technology that was developed during these airborne efforts to a terrestrial application involving Army ground vehicles. The Future Combat Systems Program (FCS) for the U.S. Army recently solicited a networked-based solution to the problem of acquiring real-time data specific to the training of soldiers operating visual targeting systems within Bradley Armored Vehicles and Abrams Battle Tanks. This paper describes the High-Speed Digital Recording system, a network-based data acquisition system designed to allow for the recording of high-resolution (up to 1600x1280) RGB video, user-selected Ethernet packets, along with audio and GPS time information.
|
386 |
Using Labview to Design a Payload Control SystemHoran, Stephen 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / As part of a project to develop small satellites, we have developed a combined ground station and flight computer control software package using LabVIEW. These computer systems are used to acquire data from sensors, control communications links, provide automatic data acquisition capabilities, and provide a user interface. In this paper, we will look at the state machines that describe both sets of software, the challenges for the flight computer development given the PC/104 format, and show how the final product was deployed.
|
387 |
Extensions to the Instrument Hardware Abstraction Language (IHAL)Hamilton, John, Fernandes, Ronald, Graul, Michael, Darr, Timothy, Jones, Charles H. 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / In this paper we describe extensions to the Instrument Hardware Abstraction Language (IHAL). Since IHAL was first presented to ITC in 2006, a number of improvements were made to the design of IHAL. Major changes to the schema include splitting it into multiple XML Schema (XSD) files, separation of the description of instrumentation functions from the description of the hardware, and addition of a function pool.
|
388 |
Electrical bioimpedance cerebral monitoring / fundamental steps towards clinical applicationSeoane Martínez, Fernando January 2007 (has links)
Neurologically related injuries cause a similar number of deaths ascancer, and brain damage is the second commonest cause of death in theworld and probably the leading cause of permanent disability. Thedevastating effects of most cases of brain damage could be avoided if itwere detected and medical treatment initiated in time. The passiveelectrical properties of biological tissue have been investigated for almost acentury and electrical bioimpedance studies in neurology have beenperformed for more than 50 years. Even considering the extensive effortsdedicated to investigating potential applications of electrical bioimpedancefor brain monitoring, especially in the last 20 years, and the specificallyacute need for such non-invasive and efficient diagnosis support tools,Electrical Bioimpedance technology has not made the expectedbreakthrough into clinical application yet. In order to reach this stage inthe age of evidence-based medicine, the first essential step is todemonstrate the biophysical basis of the method under study. The presentresearch work confirms that the cell swelling accompanying thehypoxic/ischemic injury mechanism modifies the electrical properties ofbrain tissue, and shows that by measuring the complex electricalbioimpedance it is possible to detect the changes resulting from braindamage. For the development of a successful monitoring method, after thevital biophysical validation it is critical to have available the properelectrical bioimpedance technology and to implement an efficient protocolof use. Electronic instrumentation is needed for broadband spectroscopymeasurements of complex electrical bioimpedance; the selection of theelectrode setup is crucial to obtain clinically relevant measurements, andthe proper biosignal analysis and processing is the core of the diagnosissupport system. This work has focused on all these aspects since they arefundamental for providing the solid medico-technological backgroundnecessary to enable the clinical usage of Electrical Bioimpedance forcerebral monitoring.
|
389 |
THE APPLICATION OF HARDENED CRYSTAL REFERENCE OSCILLATORS INTO THE HARDENED SUBMINIATURE TELEMETRY AND SENSOR SYSTEM (HSTSS) PROGRAMHart, Alan D. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper briefly reports on concepts for hardening (physically toughening) crystal reference oscillators for the highly integrated program known as HSTSS. Within the HSTSS program is the L & S band transmitter development contract. The harshest requirements for this contract are surviving and functioning, to within 20 ppm of its center frequency, 30 ms after sustaining a shock pulse of 100,000 (g) for 0.5 ms on any axis. Additional requirements call for the transmitter to be no larger than 0.2 in3, and to operate within a 20 ppm frequency stability throughout the temperature range of -400 to +850 centigrade and during centrifugal spins of up to 300 Hz or 25,000 (g). Fundamentally the question is, is it feasible for any telemetry system to be capable of withstanding such harsh conditions and, to be practical on all DoD Test Ranges, still adhere to the stability tolerance guidelines set forth by the Range Commanders Council on Telemetry Standards - IRIG 106-96? Under "normal" conditions, stability requirements for "Range" transmitters are easily satisfied through the use of off-the-shelf crystal reference oscillators which provide the reference frequencies required within a transmitter’s phase lock loop circuitry. Unfortunately, the oscillator is also the most vulnerable part of a transmitter to the conditions listed and is the key to this problem. The oscillator’s weak points are in its resonator’s fragile quartz structure (the blank) and support mechanism. The challenge is to invent and adapt this area to these newer harsher conditions and to do it in the smallest space ever required.
|
390 |
COMBINING TECHNOLOGIES TO FOSTER IMPROVED TSPI ACCURACY AND INCREASE SHARING OF THE FREQUENCY SPECTRUMSwitzer, Earl R., Wrin, John, Huynh, James 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The loss of radio frequency (RF) spectrum for use in testing has steadily increased the likelihood that users of the few remaining frequencies available to test ranges will experience scheduling conflicts and interference with nontest users. A gradual increase in the base of test customers engaged in scientific, military, and commercial R&D, point toward a near term situation in which more test customers will be competing for fewer frequencies. The test ranges, often operating in close geographical proximity with other communications-intensive functions as well as with each other, will also encounter increasing out-of-band and adjacent-channel interference. This projected growth of R&Drelated testing constrained to operate in a diminished RF spectrum (and a more confined test space), will undoubtedly stimulate the development of new products that make more efficient use of the RF spectrum. This paper describes one such innovative approach to spectrum sharing. The authors assess the operational need for an affordable miniaturized avionics instrument package based on a C-band radar transponder integrated with a Global Positioning System/Inertial Measurement Unit (GPS/IMU). The proposed approach would make use of frequencies already allocated for use by existing C-band aeronautical transponders. It would augment the format of the transponder output data to include the vehicle position obtained from an onboard GPS/IMU. Existing range instrumentation radars, such as the venerable AN/FPS-16, could be modified with lowcost upgrade kits to provide uniformly higher accuracy over the entire transponder coverage range.
|
Page generated in 0.0565 seconds