• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 1
  • Tagged with
  • 24
  • 24
  • 11
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.
12

Antenna Selection and Deployment Strategies for Indoor Wireless Communication Systems

Wong, Alex H. C. January 2007 (has links)
Effective antenna selection and deployment strategies are important for reducing co-channel interference in indoor wireless systems. Low-cost solutions are essential, and strategies that utilise simple antennas (such as directional patches) are advantageous from this perspective. However, performance is always an issue and the improvements achievable through clever antenna deployment need to be quantified. In this thesis, an experimental investigation of indoor propagation comparing the performance of directional antennas and multiple-element arrays (MEAs) with omni-directional antennas is reported. Estimation of the performance of a direct sequence code division multiple access (DS-CDMA) system operating in a variety of deployment scenarios allows the identification of a range of performance-limiting factors and the optimal deployment strategies. It is shown that the orientation of single-element directional antennas can significantly impact on system performance compared to omni-directional antennas in traditional systems. The deployment of MEAs with an active diversity combining scheme can further improve system performance by more than one order of magnitude. From the perspective of system planning, the choice of antenna selection and deployment options depends on the current and future demand for system performance and the financial resources available. An evolutionary path has been proposed to provide a smooth transition from conventional (low-cost) to high-performance (high-cost) antenna systems as demand dictates. Other performance-limiting factors in indoor wireless systems include the physical environment and external interference. It is also shown that electromagnetically-opaque obstacles in the environment can amplify the effectiveness of the antenna deployment by acting as physical zone boundaries that restrict interference. External interference has been shown to cause a significant degradation to the performance of an indoor system when the carrier-to-external-interference ratio (CEIR) is below 30 dB. This performance degradation can be minimised by appropriate antenna deployment, although the optimum antenna orientations depends on the strength of the external interference.
13

Equalization in WCDMA Terminals

Hooli, K. (Kari) 12 December 2003 (has links)
Abstract Conventional versions of linear multiuser detectors (MUD) are not feasible in the wideband code division multiple access (WCDMA) downlink due to the use of long scrambling sequences. As an alternative, linear channel equalizers restore the orthogonality of the spreading sequences lost in frequency-selective channels, thus, suppressing multiple access interference (MAI) in the WCDMA downlink. In this thesis, linear channel equalizers in WCDMA terminals are studied. The purpose of the thesis is to develop novel receivers that provide performance enhancement over conventional rake receivers with an acceptable increase in complexity, and to validate their performance under WCDMA downlink conditions. Although the WCDMA standard is emphasized as the candidate system, the receivers presented are suitable for any synchronous direct sequence code division multiple access downlink employing coherent data detection and orthogonal user or channel separation. Two adaptive channel equalizers are developed based on the constrained minimum output energy (MOE) criterion and sample matrix inversion method. An existing equalizer based on the matrix inversion lemma is also developed further to become a prefilter-rake equalizer. Performance analysis is carried out for equalizers trained using a common pilot channel and for the channel response constrained MOE (CR-MOE) and sample matrix inversion (SMI) based equalizers developed in the thesis. The linear minimum mean square error (LMMSE) channel equalizer, which assumes a random scrambling sequence, is shown to approximate the performance of the LMMSE MUD. The adaptive CR-MOE, SMI-based, and prefilter-rake equalizers are observed to attain performance close to that of an approximate LMMSE channel equalizer. The equalizers considered are also shown to be suitable for implementation with fixed-point arithmetic. The SMI-based equalizer is shown to provide good performance and to require an acceptable increase in complexity. It is also well suited for symbol rate equalization after despreading, which allows for computationally efficient receiver designs for low data rate terminals. Hence, the SMI-based equalizer is a suitable receiver candidate for both high and low data rate terminals. Adaptive equalizers are considered in conjunction with forward error correction (FEC) coding, soft handover, transmit diversity and high speed downlink packet access (HSDPA). The adaptive equalizers are shown to provide significant performance gains over the rake receiver in frequency selective channels. The performance gains provided by one antenna equalizers are noted to decrease near the edges of a cell, whereas the equalizers with two receive antennas achieve significant performance improvements also with soft handover. The performance gains of one or two antenna equalizers are shown to be marginal in conjunction with transmit antenna diversity. Otherwise the equalizers are observed to attain good signal-to-noise-plus-interference ratio performance. Therefore, they are also suitable receiver candidates for HSDPA.
14

General Interference Suppression Technique For Diversity Wireless Rece

Yang, Tianyu 01 January 2004 (has links)
The area of wireless transceiver design is becoming increasingly important due to the rapid growth of wireless communications market as well as diversified design specifications. Research efforts in this area concentrates on schemes that are capable of increasing the system capacity, providing reconfigurability/reprogrammability and reducing the hardware complexity. Emerging topics related to these goals include Software Defined Radio, Multiple-Input-Multiple-Output (MIMO) Systems, Code Division Multiple Access, Ultra-Wideband Systems, etc. This research adopts space diversity and statistical signal processing for digital interference suppression in wireless receivers. The technique simplifies the analog front-end by eliminating the anti-aliasing filters and relaxing the requirements for IF bandpass filters and A/D converters. Like MIMO systems, multiple antenna elements are used for increased frequency reuse. The suppression of both image signal and Co-Channel Interference (CCI) are performed in DSP simultaneously. The signal-processing algorithm used is Independent Component Analysis (ICA). Specifically, the fixed-point Fast-ICA is adopted in the case of static or slow time varying channel conditions. In highly dynamic environment that is typically encountered in cellular mobile communications, a novel ICA algorithm, OBAI-ICA, is developed, which outperforms Fast-ICA for both linear and abrupt time variations. Several practical implementation issues are also considered, such as the effect of finite arithmetic and the possibility of reducing the number of antennas.
15

Improved Statistical Interference Suppression Techniques in Single and Multi-rate Direct Sequence Spread Spectrum Code Division Multiple Access Systems

Wang, Beibei 20 April 2007 (has links)
No description available.
16

Reduced Rank Adaptive Filtering Applied to Interference Mitigation in Wideband CDMA Systems

Sud, Seema 01 May 2002 (has links)
The research presented in this dissertation is on the development and application of advanced reduced rank adaptive signal processing techniques for high data rate wireless code division multiple access (CDMA) communications systems. This is an important area of research in the field of wireless communications. Current systems are moving towards the use of multiple simultaneous users in a given channel to increase system capacity as well as spatial and/or temporal diversity for improved performance in the presence of multipath and fading channels. Furthermore, to accommodate the demand for higher data rates, fast signal processing algorithms are required, which often translate into blind signal detection and estimation and the desire for optimal, low complexity detection techniques. The research presented here shows how minimum mean square error (MMSE) receivers implemented via the multistage Wiener filter (MWF) can be employed at the receiving end of a CDMA system to perform multiuser detection (MUD) or interference suppression (IS) with no loss in performance and significant signal subspace compression better than any previous reduced rank techniques have shown. This is important for optimizing performance because it implies a reduction in the number of required samples, so it lessens the requirement that the channel be stationary for a time duration long enough to obtain enough samples for an accurate MMSE estimate. The structure of these receivers is derived for synchronous and asynchronous systems for a multipath environment, and then it is shown that implementation of the receiver in a reduced rank subspace results in no loss in performance over full rank methods. It is also shown in some instances that reduced rank exceeds full rank performance. Multiuser detectors are also studied, and the optimal reduced rank detector is shown to be equivalent to a bank of parallel single user detectors performing interference suppression (IS). The performance as a function of rank for parallel and joint multiuser detectors are compared. The research is then extended to include joint space-code (i.e. a joint multiuser detector) and joint space-time processing algorithms which employ receiver diversity for low complexity diversity gain. Non-linear techniques, namely serial interference cancellation (SIC) and parallel interference cancellation (PIC), will also be studied. The conventional matched filter correlator will be replaced by the MWF, thereby incorporating IS at each stage of the interference canceller for improved performance. A closed form expression is derived for the probability of error, and performance gains are evaluated. It will be further shown how the receiver structure can be extended when space-time codes are employed at the transmitter for additional diversity gain with minimal impact on complexity. The MMSE solution is derived and implemented via the MWF with some examples. It is believed that these new techniques will have a significant impact on the design of fourth generation (4G) and beyond cellular CDMA systems. / Ph. D.
17

[en] STRUCTURES AND ADAPTIVE ALGORITHMS FOR BLIND DETECTION OF DS-CDMA SIGNALS / [pt] ESTRUTURAS E ALGORITMOS ADAPTATIVOS PARA DETECÇÃO ÀS CEGAS DE SINAIS DS-CDMA

TIAGO TRAVASSOS VIEIRA VINHOZA 24 June 2008 (has links)
[pt] Esta tese apresenta novas estruturas e algoritmos adaptativos para detecção às cegas de sinais DS-CDMA. São investigados receptores cegos com restrições lineares baseados nas funções custo de mínima variância (CMV) e módulo constante (CCM). Algoritmos adaptativos do tipo Affine-Projection para estimação dos parâmetros do receptor são desenvolvidos e seu desempenho em estado estacionário é analisado. Também são apresentados algoritmos adaptativos para estimação às cegas do canal de comunicações. Em seguida, novas estruturas de canceladores de interferência são propostas. Primeiramente um cancelador de interferência paralelo (PIC) linear baseado na função custo CCM é proposto. Em seguida é desenvolvido um novo esquema não-supervisionado de cancelamento sucessivo de interferência (SIC), baseado no conceito de arbitragem paralela. Por fim, é apresentado um esquema híbrido (HIC) que combina a estrutura SIC com uma estrutura multi- estágio, resultando em melhores estimativas para detecção e desempenho uniforme para os usuários do sistema. / [en] This thesis presents new structures and adaptive algorithms for blind detection of DS-CDMA signals. Linearly constrained minimum variance (CMV) and constant modulus (CCM) receivers are investigated. Blind adaptive Affine- Projection like algorithms for receiver parameter estimation are derived and its steady-state performance is analyzed. Blind adaptive channel estimation algorithms are also presented. This work also proposes new interference cancellation structures. Firstly, a blind linear parallel interference canceller (PIC) based on the CCM cost function is proposed. Secondly, a new non-supervised serial interference canceller (SIC) based on the parallel arbitration concept is developed. Finally, an hybrid interference cancellation scheme (HIC) which combines SIC and multiple PIC stages is presented.
18

Linearly Constrained Constant Modulus Inverse QRD-RLS Algorithm for Modified Gaussian Wavelet-Based MC-CDMA Receiver

Yu, Hung-ming 13 February 2007 (has links)
In this thesis, the problem of multiple access interference (MAI) suppression for the multi-carrier (MC) code division multiple access (CDMA) system, based on the multi-carrier modulation with modified Gaussian wavelet, associated with the combining process is investigated for Rayleigh fading channel. The main concern of this thesis is to derive a new scheme, based on the linearly constrained constant modulus (LCCM) criterion with the robust inverse QR decomposition (IQRD) recursive least squares (RLS) algorithm to improve the performance of the wavelet-based MC-CDMA system with combining process. To verify the merits of the new algorithm, the effect due to imperfect channel parameters estimation and near-far effect are investigated. We show that the proposed robust LCCM IQRD-RLS algorithm outperforms the conventional LCCM-gradient algorithm, in terms of output SINR, for MAI suppression under channel mismatch environment. Also, the performance of the modified Gaussian wavelet-based MC-CDMA system is superior to the one with wavelet-based MC-CDMA system. It is more robust to the channel mismatch and near-far effect. Moreover, the modified Gaussian wavelet-based MC-CDMA system with robust LCCM IQRD-RLS algorithm does have better performance over other conventional approaches, such as the LCCM-gradient algorithm, maximum ratio combining (MRC), and blind adaptation algorithm, in terms of the capability of MAI suppression and bit error rate (BER).
19

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
20

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.

Page generated in 0.0546 seconds