• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 626
  • 175
  • 85
  • 80
  • 58
  • 24
  • 19
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 8
  • 5
  • Tagged with
  • 1388
  • 336
  • 166
  • 141
  • 124
  • 114
  • 109
  • 109
  • 107
  • 97
  • 92
  • 91
  • 91
  • 89
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
811

The role of passive joint stiffness and active knee control in robotic leg swinging: applications to dynamic walking

Migliore, Shane A. 04 January 2008 (has links)
The field of autonomous walking robots has been dominated by the trajectory-control approach, which rigidly dictates joint angle trajectories at the expense of both energy efficiency and stability, and the passive dynamics approach, which uses no actuators, relying instead on natural mechanical dynamics as the sole source of control. Although the passive dynamics approach is energy efficient, it lacks the ability to modify gait or adapt to disturbances. Recently, minimally actuated walkers, or dynamic walkers, have been developed that use hip or ankle actuators---knees are always passive---to regulate mechanical energy variations through the timely application of joint torque pulses. Despite the improvement minimal actuation has provided, energy efficiency remains below target values and perturbation rejection capability (i.e., stability) remains poor. In this dissertation, we develop and analyze a simplified robotic system to assess biologically inspired methods of improving energy efficiency and stability in dynamic walkers. Our system consists of a planar, dynamically swinging leg with hip and knee actuation. Neurally inspired, nonlinear oscillators provide closed-loop control without overriding the leg's natural dynamics. We first model the passive stiffness of muscles by applying stiffness components to the joints of a hip-actuated swinging leg. We then assess the effect active knee control has on unperturbed and perturbed leg swinging. Our results indicate that passive joint stiffness improves energy efficiency by reducing the actuator work required to counter gravitational torque and by promoting kinetic energy transfer between the shank and thigh. We also found that active knee control 1) is detrimental to unperturbed leg swinging because it negatively affects energy efficiency while producing minimal performance improvement and 2) is beneficial during perturbed swinging because the perturbation rejection improvement outweighs the reduction in energy efficiency. By analyzing the effects of applying passive joint stiffness and active knee control to dynamic walkers, this work helps to bridge the gap between the performance capability of trajectory-control robots and the energy-efficiency of passive dynamic robots.
812

Radiographic determination of the lay-up influence on fatigue damage development under bearing/bypass conditions

Tompson, Carl G. 13 May 2009 (has links)
The goal of this academic project was to study the effects of different variables on the damage initiation and progression around four bolt holes of a joint in carbon fiber/graphite epoxy composite coupons. The tracked variables included the type of layup, R values, stress levels, and damage mechanisms observed in each specimen. In-situ x-ray of the individual coupons recorded the extent of damage, mostly longitudinal splitting and bearing failure, as a function of the cycle count. The following lay-ups were included: [45/90/-45/02/45/02/-45/0]s, [04/45/03/90/0]s, [±5/65/(±5)2/-65/±5]s, and [±5/65/(±5)2/-65/5/65]s, In particular, the objective was to determine the stress levels at which detectable damage starts developing by applying 50,000 cycles at incremental stress levels. Once damage was initially detected, we typically raised the stress level 2.5 ksi and cycled another 50,000 cycles until damage reached a point where the bolt holes had elongated 10% of the original diameter of 0.25 inches. This type of testing was be continued for several different R ratios and comparisons were be made between the performances of different lay-ups at varying load levels. A finite element model was created in ABAQUS to help understand the stress fields within the laminates.
813

Computational Fracture Prediction in Steel Moment Frame Structures with the Application of Artificial Neural Networks

Long, Xiao 2012 August 1900 (has links)
Damage to steel moment frames in the 1994 Northridge and 1995 Hyogken-Nanbu earthquakes subsequently motivated intensive research and testing efforts in the US, Japan, and elsewhere on moment frames. Despite extensive past research efforts, one important problem remains unresolved: the degree of panel zone participation that should be permitted in the inelastic seismic response of a steel moment frame. To date, a fundamental computational model has yet to be developed to assess the cyclic rupture performance of moment frames. Without such a model, the aforementioned problem can never be resolved. This dissertation develops an innovative way of predicting cyclic rupture in steel moment frames by employing artificial neural networks. First, finite element analyses of 30 notched round bar models are conducted, and the analytical results in the vicinity of the notch root are extracted to form the inputs for either a single neural network or a competitive neural array. After training the neural networks, the element with the highest potential to initiate a fatigue crack is identified, and the time elapsed up to the crack initiation is predicted and compared with its true synthetic answer. Following similar procedures, a competitive neural array comprising dynamic neural networks is established. Two types of steel-like materials are created so that material identification information can be added to the input vectors for neural networks. The time elapsed by the end of every stage in the fracture progression is evaluated based on the synthetic allocation of the total initiation life assigned to each model. Then, experimental results of eight beam-to-column moment joint specimens tested by four different programs are collected. The history of local field variables in the vicinity of the beam flange - column flange weld is extracted from hierarchical finite element models. Using the dynamic competitive neural array that has been established and trained, the time elapsed to initiate a low cycle fatigue crack is predicted and compared with lab observations. Finally, finite element analyses of newly designed specimens are performed, the strength of their panel zone is identified, and the fatigue performance of the specimens with a weak panel zone is predicted.
814

Reliability and clinical utility of the hand and wrist strength gauge

Broniecki, Monica January 2003 (has links)
TThis thesis looks at the development of a Hand and Wrist Strength Gauge. The gauge was developed by the author at the Flinders Medical Centre Occupational Therapy Department in 1997. / thesis (MApSc(OccupationalTherapy))--University of South Australia, 2003.
815

Optimisation and improvement of the design of scarf repairs to aircraft

Harman, Alex Bruce, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Flush repairs to military aircraft are expected to become more prevalent as more thick skin composites are used, particularly on the surface of the fuselage, wings and other external surfaces. The use of these repairs, whilst difficult to manufacture provide an aerodynamic, ???stealthy??? finish that is also more structurally efficient than overlap repairs. This research was undertaken to improve the design methodology of scarf repairs with reduced material removal and to investigate the damage tolerance of scarf repair to low velocity impact damage. Scarf repairs involve shallow bevel angles to ensure the shear stress in the adhesive does not exceed allowable strength. This is important when repairing structures that need to withstand hot and humid conditions, when the adhesive properties degrade. Therefore, considerable amounts of parent material must be machined away prior to repair. The tips of the repair patch and the parent laminate are very sharp, thus a scarf repair is susceptible to accidental damage. The original contributions include: ??? Developed analytic means of predicting the stresses within optimised scarf joints with dissimilar materials. New equations were developed and solved using numerical algorithms. ??? Verified using finite element modelling that a scarfed insert with dissimilar modulus subjected to uniaxial loading attracted the same amount of load as an insert without a scarf. As such, the simple analytic formula used to predict load attraction/diversion through a plate with an insert may be used to predict the load attraction/diversion into a scarf repair that contains a dissimilar adherend patch. ??? Developed a more efficient flush joint with a doubler insert placed near the mid line of the parent structure material. This joint configuration has a lower load eccentricity than external doubler joint. ??? Investigated the damage tolerance of scarf joints, with and without the external doubler. The results showed that scarf joints without external doublers exhibited a considerable strength reduction following low velocity impact. Based on the observations, the major damage mechanics in the scarf joint region following impact have been identified. These results demonstrated that it is important to incorporate damage tolerance in the design of scarf repairs.
816

Femoral bone remodelling following cemented hip arthroplasty in a sheep model / Allan W. Wang.

Wang, Allan W. (Allan Wen Li) January 1998 (has links)
Bibliography: leaves 198-219. / xii, 219 leaves : ill. (chiefly col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Examines the effect of implant design on the femoral bone remodelling response in a sheep cemented hip arthroplasty model. The clinical section of the thesis also indicates the importance of biological factors in the femoral bone remodelling response. / Thesis (Ph.D.)--University of Adelaide, Dept. of Orthopaedics and Trauma, 1998
817

An investigation into the effect of stretching frequency on range of motion at the ankle joint

Trent, Vanessa Unknown Date (has links)
Stretching is a widely prescribed technique that has been demonstrated to increase range of motion. Consequently it may enhance performance and aid in the prevention and treatment of injury. Few studies have investigated the frequency of stretching on a daily basis. The purpose of this study was to investigate the effect of stretching frequency on range of motion at the ankle joint. The detraining effect was also investigated after a period without stretching. Thirty-one female subjects participated in this study. They were randomly assigned to a control group who did not stretch a group who stretched two times per week (Stretch-2) or a group who stretched four times per week (Stretch-4). The stretching intervention was undertaken over four weeks and targeted the gastrocnemius and soleus muscles. Each stretch was held for duration of 30 seconds and repeated five times. Prior to the intervention (PRE), dorsiflexion was measured using a weights and pulley system that passively moved the ankle joint from a neutral position into dorsiflexion. After the four week stretching period (POST), dorsiflexion was measured once again to determine the change following the stretching programme. Following a further four week period where no stretching took place (FINAL), dorsiflexion was measured to determine the detraining effect. Electromyography was used to monitor the activity of the plantarflexors and dorsiflexors during the measuring procedure. The results of the study showed a significant increase in ankle joint range of motion for the Stretch-4 group (p<0.05) when comparing PRE and POST measurements. The Stretch-2 and control groups did not show significant differences (p>0.05) between PRE and POST measurements. When comparing the PRE and FINAL measurements of the Stretch-4 group, no significant differences were recorded (p>0.05). The POST and FINAL measurements were significantly different (p<0.05). After the detraining period the Stretch-4 group lost 99.8% of their range of motion gains. The present data provide some evidence that the viscoelastic properties of the muscle stretched were unchanged by the four week static stretching programme. The mechanism involved in the observed increase in range of motion for the Stretch-4 group is possibly that of enhanced stretch tolerance of the subject. Further research is required to support this conjecture.
818

Stabilisation of the human ankle joint in varying degrees of freedom : investigation of neuromuscular mechanisms

Skoss, Ann Rachel Locke January 2002 (has links)
Previous research investigating the stability of the ankle joint complex may be categorised into two methodological groups, employing either an actuator to perturb the limb, or a form of standing balance disturbance such as a tilting platform, both of which test the joint in single degree of freedom (DOF). The aim of this thesis was to investigate how we control foot position and stabilise the joint when there is potential for movement in three DOF. A secondary aim of the thesis was to model the intrinsic mechanical properties of the ankle joint complex in three dimensions when coupled movement of the tibio-talar and talo-calcaneal joints are possible. This thesis details (i) the development of a perturbation rig that allows foot movement in single- or three-DOF with associated real-time visual target-matching software, and (ii) the use of the rig to investigate the stabilisation of the ankle joint complex in single- and three-DOF. The experimental procedure used a common task performed in three experimental conditions. Subjects were required to maintain a neutral foot position while developing varying levels of plantar-flexion torque. A perturbation was applied to the foot if subjects were within specified tolerance for both foot position and torque, represented by the visual display. Performance of the task in the first condition required the subject to only match torque as the foot position was fixed, with the perturbation being applied in dorsi-flexion (ie, single-DOF). The second experimental condition allowed the foot to move in the sagittal plane, hence subjects were required to control both torque and foot position in single-DOF, with perturbation applied in dorsi-flexion. The third condition enabled movement in dorsi/plantar-flexion, inversion/eversion and adduction/abduction (three-DOF) in both task and perturbation. Subjects were required to maintain the neutral foot position and the necessary torque level. There were three areas of interest common to each experimental protocol. The muscle strategy used to complete the task was investigated using a combination of surface and fine-wire electromyography on lower leg and thigh muscles. The 500ms period prior to perturbation was investigated to determine if synergies were evident between muscles such as medial and lateral gastrocnemius, soleus and peroneus longus. Two classes of activation strategies for the three-DOF condition emerged from the subject population: differential activation of the triceps surae group, and co-contraction. The former strategy may take advantage of the distinct morphology of the lateral gastrocnemius and peroneus longus muscles to best perform the position-matching component of the 3D task. The results suggest that the ankle joint is mostly stabilised in 3D by the intrinsic mechanical actions of the muscles producing plantar flexion moments. The muscles stabilised the foot in inversion, but not in eversion where there was very little motion. However, the different activation strategies employed may have varied efficacy in contributing to joint stability. This form of active stabilisation means that the previous literature focus on reflexes to stabilise the joint may need to be reassessed. Likewise, it may be appropriate to use the perturbation rig to quantify active ankle joint stability in order to assess the probability of ankle injury, rather than the current clinical measures employed. The reflexive response due to the perturbation was examined in the 200ms following perturbation. Variation in the modulation of monosynaptic reflexes was observed between subjects in various muscles in the higher DOF tasks. This is likely due to the differing activation strategies used to perform the task, and the variability in the kinematic response to perturbation. An attempt was made to calculate the intrinsic mechanical properties of the joint in 3-D using the kinematic and kinetic data during the first 15 ms period of perturbation. The system was modelled as a spring-damper using a constrained non-linear least squares, with stiffness and viscous terms for each axis, and inertial tensor elements as variables in the routine. The effect of increased muscle activation on the displacement of the foot about each of the anatomical axes was to significantly lower the movement of the sub-talar joint.
819

Transient liquid phase bonding of a third generation gamma-titanium aluminum alloy-Gamma Met PX

Butts, Daniel A., Gale, W. F. January 2005 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
820

Studies of articular cartilage macromolecules in the equine middle carpal joint, in joint pathology and training /

Skiöldebrand, Eva. January 2004 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniversitet, 2004. / Härtill 4 uppsatser.

Page generated in 0.0498 seconds