• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • Tagged with
  • 15
  • 15
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Anomalie des antineutrinos de réacteurs : recherche d’un état stérile avec l’expérience STEREO / Reactor Antineutrino Anomaly : search for a sterile state with the STEREO experiment

Bonhomme, Aurélie 26 September 2018 (has links)
L’anomalie des antineutrinos de réacteurs (RAA) a été révélée en 2011 suite à une réévaluation de la prédiction des spectres associés. Elle indique un déficit de 6% dans les taux mesurés auprès de réacteurs. Une explication consiste en l’introduction d’un neutrino stérile à l’eV, ne se manifestant que par le mécanisme d’oscillations. L’expérience STEREO a été conçue pour explorer l’espace des paramètres d’oscillations indiqués par la RAA, en plaçant une cible segmentée à 10 m du cœur quasiment pur en uranium 235 de l’ILL, à Grenoble. Les antineutrinos sont détectés par désintégration bêta inverse (IBD) dans du liquide scintillant dopé au gadolinium. Si elle existe, une oscillation se développerait alors le long des six cellules identiques de la cible. La comparaison relative de leurs spectres d’antineutrinos en énergie permet de tester l’hypothèse d’une oscillation en s’affranchissant des prédictions et avec des incertitudes systématiques réduites. Les forts rendements lumineux des liquides permettent d’atteindre de bonnes résolutions en énergie, nécessaires pour la sensibilité de la mesure. Les cellules sont séparées optiquement par des plaques hautement réfléchissantes; cette technologie a été validée sur cellule prototype dans un premier temps lors de cette thèse. Un modèle effectif pour ces parois optiques a été inclus à la simulation, et les détails de la géométrie ont été implémentés. La deuxième partie de ce travail est orientée vers l’analyse des données. La signature de l’IBD est un signal en deux temps, requérant un algorithme de recherche de paires pour extraire les candidats antineutrino. Le programme dédié est optimisé pour l’application de sélections d’isolations temporelles, permettant de se débarrasser de la majeure partie du bruit de fond d’origine cosmique. Le bruit de fond corrélé résiduel dans la région d’intérêt provient de désintégrations de muons et de réactions induites par des neutrons. Une modélisation des figures de discrimination en forme des signaux (PSD) de ce bruit de fond est employée pour extraire le signal antineutrino. Basée sur les spectres qui en résultent, les premières analyses d’oscillations de STEREO rejettent le meilleur ajustement de la RAA à 98% de niveau de confiance. / The Reactor Antineutrino Anomaly (RAA) was highlighted in 2011, when a reevaluated prediction of reactor antineutrinos spectra showed a 6% deficit in the rates observed by previous reactor experiments. A possible explanation for this anomaly consists in introducing a sterile neutrino state at the eV mass scale, participating to the neutrino oscillations mecanism only. The STEREO experiment has been designed to probe the phase-space region indicated by the RAA, by placing a segmented antineutrino target at 10m from the virtually pure uranium 235 compact core of the ILL research reactor facility, in Grenoble. Antineutrinos are detected via inverse beta decay (IBD) in gadolinium-doped liquid scintillator. An oscillation pattern - if any - would develop along the six identical target cells. The relative comparison of their energy distributions allows to test the sterile neutrino hypothesis with reduced systematic uncertainties and without referring to an external prediction. High light yields of the liquids enable to reach good energy resolutions, needed for the sensibility of the measurement. Cells are optically separated thanks to highly reflective plates; this technology has been validated on a prototype cell in the first stage of this thesis. An effective model of these walls has been included in the simulation, and details of the geometry have been carefully implemented. The second part of this work focuses on data analysis. The IBD signature is a two-fold signal, requiring a proper pair search algorithm for extracting the antineutrinos candidates. The dedicated software is optimized to apply specific temporal isolation selections, which allow to get rid of the majority of the background produced by cosmic events. The residual correlated background in the region of interest comes from muon decays and neutron induced reactions. A modelisation of the Pulse Shape Discrimination (PSD) distributions of this background is used to extract the antineutrino signal. Based on the resulting spectra, the first STEREO oscillation analysis rejects the RAA best fit point at 98% of confidence level.
12

Characterisation of the Neutron Wall and of Neutron Interactions in Germanium-Detector Systems

Ljungvall, Joa January 2005 (has links)
<p>A Monte Carlo simulation of the Neutron Wall detector system has been performed using Geant4, in order to define optimum conditions for the detection and identification of multiple neutrons. Emphasis was put on studying the scattering of neutrons between different detectors, which is the main source of the apparent increase of the number of detected neutrons. The simulation has been compared with experimental data. The quality of neutron gated γ-ray spectra was improved for both two- and three-neutron evaporation channels. The influence of small amounts of γ rays mis-interpreted as neutrons was investigated. It was found that such γ rays dramatically reduce the quality of neutron gated γ-ray spectra.</p><p>The interaction properties of fast neutrons in a closed-end coaxial and a planar high-purity germanium detector (HPGe) were studied. Digitised waveforms of HPGe preamplifier signals were recorded for time-of-flight separated neutrons and γ rays, emitted by a <sup>252</sup>Cf source. The experimental waveforms from the detectors were compared to simulated pulse shapes. In the analysis, special emphasis was given to the detection of elastically scattered neutrons, which may be an important effect to take into account in future spectrometers based on γ-ray tracking. No differences between neutron and γ-ray induced pulse shapes were found in this work.</p><p>A Monte Carlo simulation of the interactions of fast neutrons in the future 4π γ-ray spectrometer AGATA was also performed, in order to study the influence of neutrons on γ-ray tracking. It was shown that although there is a large probability of detecting neutrons in AGATA, the neutrons decrease the photo-peak efficiency of AGATA by only about 1% for each neutron emitted in coincidence with γ rays. The peak-to-background ratios in γ-ray spectra are, however, reduced to a much larger extent. The possibility of using AGATA as a neutron detector system was also investigated.</p>
13

Characterisation of the Neutron Wall and of Neutron Interactions in Germanium-Detector Systems

Ljungvall, Joa January 2005 (has links)
A Monte Carlo simulation of the Neutron Wall detector system has been performed using Geant4, in order to define optimum conditions for the detection and identification of multiple neutrons. Emphasis was put on studying the scattering of neutrons between different detectors, which is the main source of the apparent increase of the number of detected neutrons. The simulation has been compared with experimental data. The quality of neutron gated γ-ray spectra was improved for both two- and three-neutron evaporation channels. The influence of small amounts of γ rays mis-interpreted as neutrons was investigated. It was found that such γ rays dramatically reduce the quality of neutron gated γ-ray spectra. The interaction properties of fast neutrons in a closed-end coaxial and a planar high-purity germanium detector (HPGe) were studied. Digitised waveforms of HPGe preamplifier signals were recorded for time-of-flight separated neutrons and γ rays, emitted by a 252Cf source. The experimental waveforms from the detectors were compared to simulated pulse shapes. In the analysis, special emphasis was given to the detection of elastically scattered neutrons, which may be an important effect to take into account in future spectrometers based on γ-ray tracking. No differences between neutron and γ-ray induced pulse shapes were found in this work. A Monte Carlo simulation of the interactions of fast neutrons in the future 4π γ-ray spectrometer AGATA was also performed, in order to study the influence of neutrons on γ-ray tracking. It was shown that although there is a large probability of detecting neutrons in AGATA, the neutrons decrease the photo-peak efficiency of AGATA by only about 1% for each neutron emitted in coincidence with γ rays. The peak-to-background ratios in γ-ray spectra are, however, reduced to a much larger extent. The possibility of using AGATA as a neutron detector system was also investigated.
14

Design And Development Of A Liquid Scintillator Based System For Failed Fuel Detection And Locating System In Nuclear Reactors

Sumanth, Panyam 05 1900 (has links)
Failed fuel refers to the breach in the fuel-clad of an irradiated fuel assembly in a nuclear reactor. Neutron detection or gamma detection is commonly used in Failed Fuel Detection and Locating (FFDL) system to monitor the activity of the coolant. Though these methods offer specific advantages under different conditions of the coolant, providing both types of detectors in FFDL system is impractical. This limitation is the motivation for the detector system developed in the present work. In the present work, effort has been made for realising a detector system for simultaneous measurement of neutron and gamma activity of the coolant, thus offering a two-parameter basis for failed fuel detection. NE213 liquid scintillator was chosen for this work as it has good detection capability for both neutrons and gammas. Additionally, the neutrons and gammas interacting with NE213 detector can be separated based on pulse shape discrimination. The work reported in this thesis includes fabrication details and different steps followed in assembling the NE213 detector. Details of experimental set-up developed for pulse height analysis and pulse shape analysis are covered. Results of experiments carried out to study the response of the NE213 detector to gamma and neutron sources using pulse height analyser are presented. The absolute gamma efficiency and relative gamma efficiency of NE213 detector are calculated. Neutron–gamma separation capability of NE213 detector based pulse shape analysis system is reported. Application of the developed detector system to analyse the coolant activity in FFDL system in a reactor is described. Response of the detector is compared with the existing FFDL system at different power levels of the reactor. Since failed fuel is a rare event, it was simulated using neutron and gamma sources. Pulse shape analysis spectra obtained under simulated failed fuel condition are presented.
15

[pt] ESTUDO DE VIOLACAO DE CP E FÍSICA ALEM DO MODELO PADRAO ATRAVES DE OSCILACAO DE NEUTRINOS EM DETETORES DE NOVA GERACAO / [en] PROBING CP VIOLATION AND PHYSICS BEYOND THE STANDARD MODEL IN NEUTRINO OSCILLATION BY NEW GENERATION DETECTORS

FRANCESCO PESSINA 09 February 2022 (has links)
[pt] Neste trabalho de tese investigaremos um novo método para medir a fase leptóonica de violação CP, CP , com um set up experimental chamado LiquidO e, estudaremos a possibilidade do futuro experimento Hyper-Kamiokande de pôr um limite sobre o tempo de vida do neutrino. Ambos são experimentos que detectam neutrinos de acelerador que performarão as próprias medições através do estudo do bem conhecido fenómeno da oscilação de sabor de neutrinos. O primeiro experimento considerado possui duas novas características: primeiramente utiliza como fonte de neutrino um fluxo de Vμ e Vμ produzidos por pions (pi+) em repouso a uma distância de 16 km e secondariamente vai usar uma nova forma de detecção. Essa detecção é feita utilizando cintilador liquido opaco com fibras ópticas que permitem distinguir entre e+ e e-. Nós explicaremos as principais propriedades fenomenológicas desta configuração e calcularemos a significância estatística de exclusão da hipótese CP = (0, pi), a precisão de medição de CP com 1δ de confiança estatística e também as regões permitidas no espaço dos parámetros sin2 023 - δ CP . Na segunda parte do nosso trabalho, nos concentraremos no experimento Hyper-Kamiokande, versão melhorada do experimento Super-Kamiokande que se adjudicou o prémio Nobel em 2015. Este é um detector de luz Cherenkov que utiliza um fluxo de Vμ (Vμ) com energias < 10GeV produzido no acelerador JPARC e colocado a uma distância de 295 km. Neste trabalho identificaremos este experimento como T2HK enquanto para a sua estensão na Korea, que utilizará a mesma fonte mas será colocada a 1100 km de distância, utilizaremos a sigla T2HKK. Nós introduziremos brevemente as modalidades de decaimento do neutrino que podem ser classificadas em dois tipos: um é chamado decaimento invisível, ou seja, quando o neutrino de origem decai em um estado estéril mais uma partícula escalar, e o outro e chamdo de decaimento visível, ou seja, quando o neutrino de origem decai em um autoestado de massa ativo mais uma partícula escalar. Em fim calcularemos as sensitividades no limite da vida média do autoestado V3 para os casos de decaimento visível e invisível para as configurações de T2HK e T2HKK. / [en] In this thesis we will study a novel method to measure the leptonic CP violation phase, CP , in an experimental set up called LiquidO, and the possibility by the future experiment Hyper-Kamiokande to put a limit on the neutrino lifetime. Both experiment are accelerator based ones that will use the well established neutrino flavour oscillation phenomenon to perform their measurement. The first experimental set up uses two new features: firstly it uses as a source a flux of Vμ and Vμ coming from pions (pi+) decay at rest with a baseline of 16 km and secondly it uses a new detection method. This new detection is performed using opaque Liquid Scintillator (LS) with optical fibers that allows e+ e- identification. We will discuss the phenomenological main characteristics of this set up and we will calculate the expected significance to exclude the δ CP = (0, pi) hypothesis, the 1δ precision of the CP measurement and also the expected allowed regions in the sin2 023 - δ CP plane. For what it concerns the second part of our work, we will focus on the Hyper-Kamiokande experiment, upgrade of the 2015 Nobel prize awarded Super-Kamiokande. This is a water Cherenkov detector that will use a Vμ (Vμ) flux with a typical neutrino energy < 10 GeV coming from the JPARC facility with a baseline of 295 km. We will call this source-detector configuration T2HK to distinguish T2HKK, the possible extension of this experiment in Korea that will use the same beam but it will be located at 1100 km from the source. We will briefly introduce the neutrino decay mode that can be classified in two types: one is what is called invisible decay , i.e. when neutrino decays into a sterile neutrino state plus a scalar particle, and the other is called visible decay, i.e. when neutrino decays into an active mass eigenstate plus a scalar particle. We will calculate the limit on the V3 lifetime for the invisible and the visible case for both configurations T2HK and T2HKK.

Page generated in 0.0341 seconds