• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • Tagged with
  • 25
  • 25
  • 25
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Efficient Graph Summarization of Large Networks

Hajiabadi, Mahdi 24 June 2022 (has links)
In this thesis, we study the notion of graph summarization, which is a fundamental task of finding a compact representation of the original graph called the summary. Graph summarization can be used for reducing the footprint of the input graph, better visualization, anonymizing the identity of users, and query answering. There are two different frameworks of graph summarization we consider in this thesis, the utility-based framework and the correction set-based framework. In the utility-based framework, the input graph is summarized until a utility threshold is not violated. In the correction set-based framework a set of correction edges is produced along with the summary graph. In this thesis we propose two algorithms for the utility-based framework and one for the correction set-based framework. All these three algorithms are for static graphs (i.e. graphs that do not change over time). Then, we propose two more utility-based algorithms for fully dynamic graphs (i.e. graphs with edge insertions and deletions). Algorithms for graph summarization can be lossless (summarizing the input graph without losing any information) or lossy (losing some information about the input graph in order to summarize it more). Some of our algorithms are lossless and some lossy, but with controlled utility loss. Our first utility-driven graph summarization algorithm, G-SCIS, is based on a clique and independent set decomposition, that produces optimal compression with zero loss of utility. The compression provided is significantly better than state-of-the-art in lossless graph summarization, while the runtime is two orders of magnitude lower. Our second algorithm is T-BUDS, a highly scalable, utility-driven algorithm for fully controlled lossy summarization. It achieves high scalability by combining memory reduction using Maximum Spanning Tree with a novel binary search procedure. T-BUDS outperforms state-of-the-art drastically in terms of the quality of summarization and is about two orders of magnitude better in terms of speed. In contrast to the competition, we are able to handle web-scale graphs in a single machine without performance impediment as the utility threshold (and size of summary) decreases. Also, we show that our graph summaries can be used as-is to answer several important classes of queries, such as triangle enumeration, Pagerank and shortest paths. We then propose algorithm LDME, a correction set-based graph summarization algorithm that produces compact output representations in a fast and scalable manner. To achieve this, we introduce (1) weighted locality sensitive hashing to drastically reduce the number of comparisons required to find good node merges, (2) an efficient way to compute the best quality merges that produces more compact outputs, and (3) a new sort-based encoding algorithm that is faster and more robust. More interestingly, our algorithm provides performance tuning settings to allow the option of trading compression for running time. On high compression settings, LDME achieves compression equal to or better than the state of the art with up to 53x speedup in running time. On high speed settings, LDME achieves up to two orders of magnitude speedup with only slightly lower compression. We also present two lossless summarization algorithms, Optimal and Scalable, for summarizing fully dynamic graphs. More concretely, we follow the framework of G-SCIS, which produces summaries that can be used as-is in several graph analytics tasks. Different from G-SCIS, which is a batch algorithm, Optimal and Scalable are fully dynamic and can respond rapidly to each change in the graph. Not only are Optimal and Scalable able to outperform G-SCIS and other batch algorithms by several orders of magnitude, but they also significantly outperform MoSSo, the state-of-the-art in lossless dynamic graph summarization. While Optimal produces always the most optimal summary, Scalable is able to trade the amount of node reduction for extra scalability. For reasonable values of the parameter $K$, Scalable is able to outperform Optimal by an order of magnitude in speed, while keeping the rate of node reduction close to that of Optimal. An interesting fact that we observed experimentally is that even if we were to run a batch algorithm, such as G-SCIS, once for every big batch of changes, still they would be much slower than Scalable. For instance, if 1 million changes occur in a graph, Scalable is two orders of magnitude faster than running G-SCIS just once at the end of the 1 million-edge sequence. / Graduate
22

Efficient Frequent Closed Itemset Algorithms With Applications To Stream Mining And Classification

Ranganath, B N 09 1900 (has links)
Data mining is an area to find valid, novel, potentially useful, and ultimately understandable abstractions in a data. Frequent itemset mining is one of the important data mining approaches to find those abstractions in the form of patterns. Frequent Closed itemsets provide complete and condensed information for non-redundant association rules generation. For many applications mining all the frequent itemsets is not necessary, and mining frequent Closed itemsets are adequate. Compared to frequent itemset mining, frequent Closed itemset mining generates less number of itemsets, and therefore improves the efficiency and effectiveness of these tasks. Recently, much research has been done on Closed itemsets mining, but it is mainly for traditional databases where multiple scans are needed, and whenever new transactions arrive, additional scans must be performed on the updated transaction database; therefore, they are not suitable for data stream mining. Mining frequent itemsets from data streams has many potential and broad applications. Some of the emerging applications of data streams that require association rule mining are network traffic monitoring and web click streams analysis. Different from data in traditional static databases, data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. Recent works on data stream mining based on sliding window method slide the window by one transaction at a time. But when the window size is large and support threshold is low, the existing methods consume significant time and lead to a large increase in user response time. In our first work, we propose a novel algorithm Stream-Close based on sliding window model to mine frequent Closed itemsets from the data streams within the current sliding window. We enhance the scalabality of the algorithm by introducing several optimization techniques such as sliding the window by multiple transactions at a time and novel pruning techniques which lead to a considerable reduction in the number of candidate itemsets to be examined for closure checking. Our experimental studies show that the proposed algorithm scales well with large data sets. Still the notion of frequent closed itemsets generates a huge number of closed itemsets in some applications. This drawback makes frequent closed itemsets mining infeasible in many applications since users cannot interpret the large volume of output (which sometimes will be greater than the data itself when support threshold is low) and may lead to an overhead to develop extra applications which post processes the output of original algorithm to reduce the size of the output. Recent work on clustering of itemsets considers strictly either expression(consists of items present in itemset) or support of the itemsets or partially both to reduce the number of itemsets. But the drawback of the above approaches is that in some situations, number of itemsets does not reduce due to their restricted view of either considering expressions or support. So we propose a new notion of frequent itemsets called clustered itemsets which considers both expressions and support of the itemsets in summarizing the output. We introduce a new distance measure w.r.t expressions and also prove the problem of mining clustered itemsets to be NP-hard. In our second work, we propose a deterministic locality sensitive hashing based classifier using clustered itemsets. Locality sensitive hashing(LSH)is a technique for efficiently finding a nearest neighbour in high dimensional data sets. The idea of locality sensitive hashing is to hash the points using several hash functions to ensure that for each function the probability of collision is much higher for objects that are close to each other than those that are far apart. We propose a LSH based approximate nearest neighbour classification strategy. But the problem with LSH is, it randomly chooses hash functions and the estimation of a large number of hash functions could lead to an increase in query time. From Classification point of view, since LSH chooses randomly from a family of hash functions the buckets may contain points belonging to other classes which may affect classification accuracy. So, in order to overcome these problems we propose to use class association rules based hash functions which ensure that buckets corresponding to the class association rules contain points from the same class. But associative classification involves generation and examination of large number of candidate class association rules. So, we use the clustered itemsets which reduce the number of class association rules to be examined. We also establish formal connection between clustering parameter(delta used in the generation of clustered frequent itemsets) and discriminative measure such as Information gain. Our experimental studies show that the proposed method achieves an increase in accuracy over LSH based near neighbour classification strategy.
23

[en] APPROXIMATE NEAREST NEIGHBOR SEARCH FOR THE KULLBACK-LEIBLER DIVERGENCE / [pt] BUSCA APROXIMADA DE VIZINHOS MAIS PRÓXIMOS PARA DIVERGÊNCIA DE KULLBACK-LEIBLER

19 March 2018 (has links)
[pt] Em uma série de aplicações, os pontos de dados podem ser representados como distribuições de probabilidade. Por exemplo, os documentos podem ser representados como modelos de tópicos, as imagens podem ser representadas como histogramas e também a música pode ser representada como uma distribuição de probabilidade. Neste trabalho, abordamos o problema do Vizinho Próximo Aproximado onde os pontos são distribuições de probabilidade e a função de distância é a divergência de Kullback-Leibler (KL). Mostramos como acelerar as estruturas de dados existentes, como a Bregman Ball Tree, em teoria, colocando a divergência KL como um produto interno. No lado prático, investigamos o uso de duas técnicas de indexação muito populares: Índice Invertido e Locality Sensitive Hashing. Os experimentos realizados em 6 conjuntos de dados do mundo real mostraram que o Índice Invertido é melhor do que LSH e Bregman Ball Tree, em termos de consultas por segundo e precisão. / [en] In a number of applications, data points can be represented as probability distributions. For instance, documents can be represented as topic models, images can be represented as histograms and also music can be represented as a probability distribution. In this work, we address the problem of the Approximate Nearest Neighbor where the points are probability distributions and the distance function is the Kullback-Leibler (KL) divergence. We show how to accelerate existing data structures such as the Bregman Ball Tree, by posing the KL divergence as an inner product embedding. On the practical side we investigated the use of two, very popular, indexing techniques: Inverted Index and Locality Sensitive Hashing. Experiments performed on 6 real world data-sets showed the Inverted Index performs better than LSH and Bregman Ball Tree, in terms of queries per second and precision.
24

Détection robuste de jonctions et points d'intérêt dans les images et indexation rapide de caractéristiques dans un espace de grande dimension / Robust junction for line-drawing images and time-efficient feature indexing in feature vector space

Pham, The Anh 27 November 2013 (has links)
Les caractéristiques locales sont essentielles dans de nombreux domaines de l’analyse d’images comme la détection et la reconnaissance d’objets, la recherche d’images, etc. Ces dernières années, plusieurs détecteurs dits locaux ont été proposés pour extraire de telles caractéristiques. Ces détecteurs locaux fonctionnent généralement bien pour certaines applications, mais pas pour toutes. Prenons, par exemple, une application de recherche dans une large base d’images. Dans ce cas, un détecteur à base de caractéristiques binaires pourrait être préféré à un autre exploitant des valeurs réelles. En effet, la précision des résultats de recherche pourrait être moins bonne tout en restant raisonnable, mais probablement avec un temps de réponse beaucoup plus court. En général, les détecteurs locaux sont utilisés en combinaison avec une méthode d’indexation. En effet, une méthode d’indexation devient nécessaire dans le cas où les ensembles de points traités sont composés de milliards de points, où chaque point est représenté par un vecteur de caractéristiques de grande dimension. / Local features are of central importance to deal with many different problems in image analysis and understanding including image registration, object detection and recognition, image retrieval, etc. Over the years, many local detectors have been presented to detect such features. Such a local detector usually works well for some particular applications but not all. Taking an application of image retrieval in large database as an example, an efficient method for detecting binary features should be preferred to other real-valued feature detection methods. The reason is easily seen: it is expected to have a reasonable precision of retrieval results but the time response must be as fast as possible. Generally, local features are used in combination with an indexing scheme. This is highly needed for the case where the dataset is composed of billions of data points, each of which is in a high-dimensional feature vector space.
25

Neural approaches to dialog modeling

Sankar, Chinnadhurai 08 1900 (has links)
Cette thèse par article se compose de quatre articles qui contribuent au domaine de l’apprentissage profond, en particulier dans la compréhension et l’apprentissage des ap- proches neuronales des systèmes de dialogue. Le premier article fait un pas vers la compréhension si les architectures de dialogue neuronal couramment utilisées capturent efficacement les informations présentes dans l’historique des conversations. Grâce à une série d’expériences de perturbation sur des ensembles de données de dialogue populaires, nous constatons que les architectures de dialogue neuronal couramment utilisées comme les modèles seq2seq récurrents et basés sur des transformateurs sont rarement sensibles à la plupart des perturbations du contexte d’entrée telles que les énoncés manquants ou réorganisés, les mots mélangés, etc. Le deuxième article propose d’améliorer la qualité de génération de réponse dans les systèmes de dialogue de domaine ouvert en modélisant conjointement les énoncés avec les attributs de dialogue de chaque énoncé. Les attributs de dialogue d’un énoncé se réfèrent à des caractéristiques ou des aspects discrets associés à un énoncé comme les actes de dialogue, le sentiment, l’émotion, l’identité du locuteur, la personnalité du locuteur, etc. Le troisième article présente un moyen simple et économique de collecter des ensembles de données à grande échelle pour modéliser des systèmes de dialogue orientés tâche. Cette approche évite l’exigence d’un schéma d’annotation d’arguments complexes. La version initiale de l’ensemble de données comprend 13 215 dialogues basés sur des tâches comprenant six domaines et environ 8 000 entités nommées uniques, presque 8 fois plus que l’ensemble de données MultiWOZ populaire. / This thesis by article consists of four articles which contribute to the field of deep learning, specifically in understanding and learning neural approaches to dialog systems. The first article takes a step towards understanding if commonly used neural dialog architectures effectively capture the information present in the conversation history. Through a series of perturbation experiments on popular dialog datasets, wefindthatcommonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most input context perturbations such as missing or reordering utterances, shuffling words, etc. The second article introduces a simple and cost-effective way to collect large scale datasets for modeling task-oriented dialog systems. This approach avoids the requirement of a com-plex argument annotation schema. The initial release of the dataset includes 13,215 task-based dialogs comprising six domains and around 8k unique named entities, almost 8 times more than the popular MultiWOZ dataset. The third article proposes to improve response generation quality in open domain dialog systems by jointly modeling the utterances with the dialog attributes of each utterance. Dialog attributes of an utterance refer to discrete features or aspects associated with an utterance like dialog-acts, sentiment, emotion, speaker identity, speaker personality, etc. The final article introduces an embedding-free method to compute word representations on-the-fly. This approach significantly reduces the memory footprint which facilitates de-ployment in on-device (memory constraints) devices. Apart from being independent of the vocabulary size, we find this approach to be inherently resilient to common misspellings.

Page generated in 0.0418 seconds