• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 9
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 43
  • 23
  • 16
  • 14
  • 14
  • 12
  • 11
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

COMPARISON OF DISPERSION CURVES ACQUIRED USING MULTICHANNEL ANALYSIS OF SURFACE WAVES WITH VARIOUS STRIKER PLATE CONFIGURATIONS

Asabere, Philip January 2016 (has links)
There is growing appreciation and research regarding geophysical methods to evaluate near surface soil properties in geotechnical engineering. Geophysical methods are generally non-destructive test (NDT) methods that do not necessitate traditional sampling of soils. Instead, they rely on application of input signals and deduction of soil properties from the measured response of the domain. Geophysical methods include various seismic, magnetic and nuclear techniques applied at the surface and/or subsurface within boreholes. Surface seismic methods, which include Multichannel Analysis of Surface Waves (MASW), are increasing in usage for geotechnical engineering purposes to evaluate stiffness properties of soils. MASW typically involves using a hammer to impact a base plate (also referred to as a striker plate) to transmit surface waves into the ground. These waves propagate through the underlying soils at a site and are received by an array of geophones placed on the ground surface. The manner in which the waves propagate is primarily influenced by soil stiffness, particularly against shear. Therefore, the signals recorded during an MASW survey can be analyzed to estimate the shear stiffness of the soils at a site, a parameter that is extremely important for seismic-related engineering purposes (e.g., site amplification, liquefaction, etc.). Aluminum plates are routinely used in a large number of MASW studies as a striker plate to couple the energy from a sledgehammer blow to the underlying soil layers. Various researchers have postulated that the material make-up of the striker plate has an effect on the frequency of the generated waves and, for that matter, the depth achieved with a typical MASW survey. For example, a less stiff material such as ultra-high-molecular-weight (UHMW) polyethylene is often recommended to increase low frequency energy of the input surface wave relative to aluminum. However, very limited research work has been performed in this area to systematically ascertain the effects of modifications to the striker plate material. Due to the limited direct research related to striker plates, MASW was utilized in this study to measure the dispersion curve resulting from MASW at various sites in the Philadelphia metropolitan area. Different striker plate configurations were used during testing to systematically quantify their effects on typical MASW results. The proposed striker base plate configurations included a one (1.0) inch thick aluminum plate, a one (1.0) inch thick aluminum plate over additional rubber mats of varying thickness, and multiple ultra-high-molecular-weight (UHMW) polyethylene plates of various thicknesses. The purpose of this testing was to examine the performance of each configuration, particularly at the low frequency range of the dispersion results. Also efforts were made to qualitatively access the durability of the configurations with respect to long term exposure to impact load. / Civil Engineering
32

Advancements in Surface Wave Testing: Numerical, Laboratory, and Field Investigations Regarding the Effects of Input Source and Survey Parameters on Rayleigh and Love waves

Mahvelati Shams Abadi, Siavash January 2019 (has links)
The Multichannel Analysis of Surface Waves (MASW) method has been widely used to evaluate the subsurface in engineering applications since late 1990’s. In MASW, surface waves are introduced into the subsurface and recorded by sensors along the ground surface. The characteristics of the propagating surface wave are influenced by the subsurface stratification, the manner in which the surface waves are input into the ground, and the survey parameters to acquire data. Rayleigh waves are typically generated by vertical strikes on a metallic plate which serves as a coupler between the active input source (e.g., a sledgehammer) and the ground surface. It has been suggested that plastic-type base plates can improve the low-frequency energy of Rayleigh waves and therefore, can increase the depth of investigation among other potential improvements. However, very little studies exist in the literature that evaluate the role of base plate material, especially plastic materials. In addition to Rayleigh surface waves, seismic surface waves can also be generated with horizontal impacts (i.e., Love waves) using specialized base plates. In this regard, much less is available in the literature regarding Love waves as sources in MASW testing which means that optimum field survey parameters, the effects of near-field, and the role of seismic source have not been thoroughly investigated yet for Love waves. Given the aforementioned gaps in the literature, two aspects of MASW have been investigated. First, the role of base plate material, specifically plastic-type plates, has been studied. Field data collected from six sites along with the data from laboratory experiments and numerical simulations of hammer-plate impact were studied. The results showed that softer base plates improve the energy transfer by as much 20% and lead to minor improvements, typically one-digit numbers in relative changes, in other signal characteristics such as signal bandwidth and signal-to-noise ratio. These results were corroborated with laboratory testing and numerical models of wave propagation with different base plate materials. The second goal was to improve understanding of Love wave propagation, particularly as related to resolution capabilities from survey parameters. Rayleigh and Love waveforms were collected with multiple active seismic sources at three sites and a systematic comparison was made between the two types of waves. Also, seismic wave propagation was simulated using the research community code SPECFEM2D to further investigate their differences. The results revealed critical new information about the depth of investigation, the effects of bedrock location on near-field effects, and the role of the different survey parameters on Rayleigh and Love wave data. The depth of investigation of Love wave MASW was deeper by about 2-9 m than that of Rayleigh MASW as a result of improved minimum frequency. The minimum source offset to avoid near-field effects was comparable for both Rayleigh and Love waves (0.3-0.4 of maximum wavelength). At closer source offset locations, Rayleigh waves were more affected by near-field effects and showed an additional 10% underestimation of planar phase velocities. Overall, the results from both parts of this study provides new practical insights about some of the unexplored aspects of surface wave testing using MASW. / Civil Engineering
33

Integration of surface seismic waves, laboratory measurements, and downhole acoustic televiewer imaging, in geotechnical characterization: Ogden, KS

Fader, Amelia Erin January 1900 (has links)
Master of Science / Department of Geology / Abdelmoneam Raef / Geotechnical site characteristics are a function of the subsurface elastic moduli and the geologic structures. This study integrates borehole, surface and laboratory measurements for a geotechnical investigation that is focused on investigating shear-wave velocity (Vs) variation and its implication to geotechnical aspects of the Ogden test site in eastern Kansas. The area has a potential of seismicity due to the seismic zone associated with the Nemaha formation where earthquakes pose a moderate hazard. This study is in response to recent design standards for bridge structures require integrating comprehensive geotechnical site characterization. Furthermore, evaluation of dynamic soil properties is important for proper seismic response analysis and soil modeling programs. In this study, near surface geophysical site characterization in the form of 2D shear-wave velocity (Vs) structure that is compared with laboratory measurements of elastic moduli and earth properties at simulated in situ overburden pressure conditions and synergy with downhole Acoustic Televiewer time and amplitude logs, proved very robust “validated” workflow in site characterization for geotechnical purposes. An important component of a geotechnical site characterization is the evaluation of in-situ shear modulus, Poisson’s ratio and reliable and accurate elastic modulus ([lambda]) and shear modulus ([mu]) estimates are important in a good geotechnical site characterization. The geophysical site characterization, undertaken in this study, will complement and help in extrapolating drilling and core-based properties deduced by the geotechnical engineers interested at the test site.
34

Potential Replacement of the US Navy's Rapid Penetration Test with the Method of Multichannel Analysis of Surface Waves

Fletcher, William 01 January 2018 (has links)
The United States Navy (USN) currently utilizes a Rapid Penetration Test (RPT) on both land and in water as the means to determine whether sufficient soil bearing capacity exists for piles in axial compression, prior to construction of the Elevated Causeway System (Modular) [ELCAS(M)] pile-supported pier system. The USN desires a replacement for the RPT because of issues with the method incorrectly classifying soils as well as the need to have a less labor-and-equipment-intensive method for geotechnical investigation. The Multichannel Analysis of Surface Waves (MASW) method is selected herein as the potential replacement for the RPT. The MASW method is an existing, geophysical method for determining soil properties based upon the acquisition and analysis of seismic surface waves used to develop shear wave velocity profiles for the soils at specific sites. Correlations between shear wave velocity and Cone Penetration Testing are utilized to classify soils, develop pile blow count estimates, and calculate soil bearing capacity. This researcher found that the MASW method was feasible and reliable in predicting the required properties for terrestrial sites. However, it was not successful in predicting those properties for underwater marine sites due to issues with equipment and field setup. Future areas of improvement are recommended to address these issues and, due to the success of the method on land, it is expected that once the issues are addressed the MASW method will be a reliable replacement for the RPT method across the entire subaerial and subaqueous profile.
35

[pt] ESTABILIDADE DE ENCOSTA NÃO SATURADA DO CAMPUS DA PUC-RIO NA GÁVEA / [en] UNSATURATED SLOPE STABILITY OF THE PUC-RIO CAMPUS IN GAVEA

JOAO VICENTE FIGUEIRA L DE MENEZES 30 April 2020 (has links)
[pt] No estado do Rio de Janeiro, os movimentos de massa em encostas passaram a representar um dos problemas mais importantes em geotecnia devido ao seu relevo acidentado, forma de ocupação e condições climáticas rigorosas. Visando identificar uma alternativa para avaliar encostas usando métodos não invasivos que possibilitem o trabalho em locais de difícil acesso, com rapidez e aquisição contínua de dados, neste trabalho é exposto uma análise teórica e prática deste processo de avaliação utilizando métodos geofísicos e o monitoramento contínuo da água no solo por meio de sensores. Os levantamentos geofísicos com uso do georadar e da análise multicanal de ondas superficiais para investigação da estratigrafia da encosta estudada, possibilitaram a identificação de três camadas: solo maduro, solo residual jovem e rocha. Para o monitoramento contínuo, são usados sensores de umidade volumétrica, sucção e um pluviômetro durante um período de 6 meses com a coleta de dados a cada 10 minutos. Com a interpretação dos dados coletados, verificou-se uma boa funcionalidade do monitoramento para avaliar as respostas de sucção e umidade volumétrica ao longo de períodos com intervalos irregulares de chuva. Os dados de precipitação e estratigrafia identificados são usados nas análises de infiltração e estabilidade saturada e não saturada, que possibilitaram a identificação de seções críticas com fator de segurança abaixo de 1,5, onde são necessárias intervenções para garantir a segurança da vizinhança. / [en] In the state of Rio de Janeiro, mass movements on slopes have become one of the most important geotechnical problems due to their rugged terrain, occupation and harsh weather conditions. In order to identify an alternative to evaluate slopes using non-invasive methods that enable work in hard to reach places, with rapid and continuous data acquisition, this paper presents a theoretical and practical analysis of this evaluation process using geophysical methods and continuous monitoring ground water through sensors. Geophysical surveys using georadar and multichannel analysis of surface wave to investigate the stratigraphy of the studied slope, allowed the identification of three layers: mature soil, young residual soil and rock. For the continuous monitoring, volumetric humidity and suction sensors and a rain gauge are used for a period of 6 months with data collection every 10 minutes. With the interpretation of the collected data, a good monitoring functionality was verified to evaluate the suction and volumetric humidity responses during periods with irregular rain intervals. The identified precipitation and stratigraphy data are used in the infiltration and saturated stability analyzes, which allowed the identification of critical sections with safety factor below 1.5, where interventions are necessary to ensure the safety of the neighborhood.
36

Development of Multichannel Analysis of Surface Waves (MASW) for Characterising the Internal Structure of Active Fault Zones as a Predictive Method of Identifying the Distribution of Ground Deformation

Duffy, Brendan Gilbert January 2008 (has links)
Bulk rock strength is greatly dependent on fracture density, so that reductions in rock strength associated with faulting and fracturing should be reflected by reduced shear coupling and hence S-wave velocity. This study is carried out along the Canterbury rangefront and in Otago. Both lie within the broader plate boundary deformation zone in the South Island of New Zealand. Therefore built structures are often, , located in areas where there are undetected or poorly defined faults with associated rock strength reduction. Where structures are sited near to, or across, such faults or fault-zones, they may sustain both shaking and ground deformation damage during an earthquake. Within this zone, management of seismic hazards needs to be based on accurate identification of the potential fault damage zone including the likely width of off-plane deformation. Lateral S-wave velocity variability provides one method of imaging and locating damage zones and off-plane deformation. This research demonstrates the utility of Multi-Channel Analysis of Surface Waves (MASW) to aid land-use planning in such fault-prone settings. Fundamentally, MASW uses surface wave dispersive characteristics to model a near surface profile of S-wave velocity variability as a proxy for bulk rock strength. The technique can aid fault-zone planning not only by locating and defining the extent of fault-zones, but also by defining within-zone variability that is readily correlated with measurable rock properties applicable to both foundation design and the distribution of surface deformation. The calibration sites presented here have well defined field relationships and known fault-zone exposure close to potential MASW survey sites. They were selected to represent a range of progressively softer lithologies from intact and fractured Torlesse Group basement hard rock (Dalethorpe) through softer Tertiary cover sediments (Boby’s Creek) and Quaternary gravels. This facilitated initial calibration of fracture intensity at a high-velocity-contrast site followed by exploration of the limits of shear zone resolution at lower velocity contrasts. Site models were constructed in AutoCAD in order to demonstrate spatial correlations between S-wave velocity and fault zone features. Site geology was incorporated in the models, along with geomorphology, river profiles, scanline locations and crosshole velocity measurement locations. Spatial data were recorded using a total-station survey. The interpreted MASW survey results are presented as two dimensional snapshot cross-sections of the three dimensional calibration-site models. These show strong correlations between MASW survey velocities and site geology, geomorphology, fluvial profiles and geotechnical parameters and observations. Correlations are particularly pronounced where high velocity contrasts exist, whilst weaker correlations are demonstrated in softer lithologies. Geomorphic correlations suggest that off-plane deformation can be imaged and interpreted in the presence of suitable topographic survey data. A promising new approach to in situ and laboratory soft-rock material and mass characterisation is also presented using a Ramset nail gun. Geotechnical investigations typically involve outcrop and laboratory scale determination of rock mass and material properties such as fracture density and unconfined compressive strength (UCS). This multi-scale approach is espoused by this study, with geotechnical and S-wave velocity data presented at multiple scales, from survey scale sonic velocity measurements, through outcrop scale scanline and crosshole sonic velocity measurements to laboratory scale property determination and sonic velocity measurements. S-wave velocities invariably increased with decreasing scale. These scaling relationships and strategies for dealing with them are investigated and presented. Finally, the MASW technique is applied to a concealed fault on the Taieri Ridge in Macraes Flat, Central Otago. Here, high velocity Otago Schist is faulted against low velocity sheared Tertiary and Quaternary sediments. This site highlights the structural sensitivity of the technique by apparently constraining the location of the principal fault, which had been ambiguous after standard processing of the seismic reflection data. Processing of the Taieri Ridge dataset has further led to the proposal of a novel surface wave imaging technique termed Swept Frequency Imaging (SFI). This inchoate technique apparently images the detailed structure of the fault-zone, and is in agreement with the conventionally-determined fault location and an existing partial trench. Overall, the results are promising and are expected to be supported by further trenching in the near future.
37

Study of the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic medium

Nasseri-Moghaddam, Ali January 2006 (has links)
The use of geophysical testing methods has considerable potential to be a cost effective and accurate technique to assess near-surface soil conditions. Multi channel analysis of surface waves (MASW) test is a geophysical non-intrusive test that uses the dispersive characteristic of Rayleigh waves to estimate low strain shear modulus and damping coefficient of near-surface soil. Also, this technique is used to detect underground voids. Recently, MASW technique has gained more attention, partly because of its ease of use and partly because of the significant improvements in data acquisition systems. The theories of MASW test consider the effect of horizontal soil layering, though the effect of lateral inhomogeneities (i. e. cavities and voids), inclined layering and inverse layering (i. e. a layered system in which the top layers are stiffer than the bottom ones) are not addressed properly in these theories. <br /><br /> The objective of this dissertation is to investigate the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic half-space excited by a transient loading. The results can be applied to locate underground cavities using MASW test and to improve the MASW analysis techniques. In lieu of theoretical solutions, two and three dimensional numerical models are constructed to simulate the MASW test. To assure the quality of the obtained data, numerical models are calibrated with Lamb solution. Voids with different sizes and embedment depths are inserted in the medium. Responses along the surface as well as inside the medium are recorded and analyzed in time, frequency, spatial and frequency-wave number domains. Different material types and sources are used to generalize the results. Afterwards, the combined effect of void and layered systems on the surface responses are studied. To verify the results, experimental field and laboratory data are presented and the trends are compared to the numerical results. <br /><br /> It is found that the void starts to vibrate in response to the Rayleigh wave excitation. Due to the vibration of the void energy partitioning occurs. Part of the incident energy is reflected in the form of Rayleigh wave. Another part is converted to body waves, and spread into the medium. The transferred part of the energy is attenuated and has smaller amplitudes. Finally, a part of energy is trapped in the void region and bounces back and forth between the void boundaries, until it damps. The trapped energy is associated to higher modes of Rayleigh waves and excited Lamb waves. The effect of trapped energy is seen as a region in the vicinity of the void with concentrated energy, in frequency domain. The extents of this region depends on the void size, and the frequency content of the incident energy. Thus, in some cases it is possible to correspond the size of the model to the extents of the region with energy concentration. <br /><br /> A new technique is proposed to determine the location of a void, and estimate its embedment depth. The technique is called Attenuation Analysis of Rayleigh Waves (AARW), and is based on the observed damping effect of the void on the surface responses. For verification, the results are compared to experimental field and laboratory data. The observations are in good agreement with the observed numerical results. Further, the AARW technique showed to be a promising tool for void detection.
38

Study of the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic medium

Nasseri-Moghaddam, Ali January 2006 (has links)
The use of geophysical testing methods has considerable potential to be a cost effective and accurate technique to assess near-surface soil conditions. Multi channel analysis of surface waves (MASW) test is a geophysical non-intrusive test that uses the dispersive characteristic of Rayleigh waves to estimate low strain shear modulus and damping coefficient of near-surface soil. Also, this technique is used to detect underground voids. Recently, MASW technique has gained more attention, partly because of its ease of use and partly because of the significant improvements in data acquisition systems. The theories of MASW test consider the effect of horizontal soil layering, though the effect of lateral inhomogeneities (i. e. cavities and voids), inclined layering and inverse layering (i. e. a layered system in which the top layers are stiffer than the bottom ones) are not addressed properly in these theories. <br /><br /> The objective of this dissertation is to investigate the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic half-space excited by a transient loading. The results can be applied to locate underground cavities using MASW test and to improve the MASW analysis techniques. In lieu of theoretical solutions, two and three dimensional numerical models are constructed to simulate the MASW test. To assure the quality of the obtained data, numerical models are calibrated with Lamb solution. Voids with different sizes and embedment depths are inserted in the medium. Responses along the surface as well as inside the medium are recorded and analyzed in time, frequency, spatial and frequency-wave number domains. Different material types and sources are used to generalize the results. Afterwards, the combined effect of void and layered systems on the surface responses are studied. To verify the results, experimental field and laboratory data are presented and the trends are compared to the numerical results. <br /><br /> It is found that the void starts to vibrate in response to the Rayleigh wave excitation. Due to the vibration of the void energy partitioning occurs. Part of the incident energy is reflected in the form of Rayleigh wave. Another part is converted to body waves, and spread into the medium. The transferred part of the energy is attenuated and has smaller amplitudes. Finally, a part of energy is trapped in the void region and bounces back and forth between the void boundaries, until it damps. The trapped energy is associated to higher modes of Rayleigh waves and excited Lamb waves. The effect of trapped energy is seen as a region in the vicinity of the void with concentrated energy, in frequency domain. The extents of this region depends on the void size, and the frequency content of the incident energy. Thus, in some cases it is possible to correspond the size of the model to the extents of the region with energy concentration. <br /><br /> A new technique is proposed to determine the location of a void, and estimate its embedment depth. The technique is called Attenuation Analysis of Rayleigh Waves (AARW), and is based on the observed damping effect of the void on the surface responses. For verification, the results are compared to experimental field and laboratory data. The observations are in good agreement with the observed numerical results. Further, the AARW technique showed to be a promising tool for void detection.
39

Development of Multichannel Analysis of Surface Waves (MASW) for Characterising the Internal Structure of Active Fault Zones as a Predictive Method of Identifying the Distribution of Ground Deformation

Duffy, Brendan Gilbert January 2008 (has links)
Bulk rock strength is greatly dependent on fracture density, so that reductions in rock strength associated with faulting and fracturing should be reflected by reduced shear coupling and hence S-wave velocity. This study is carried out along the Canterbury rangefront and in Otago. Both lie within the broader plate boundary deformation zone in the South Island of New Zealand. Therefore built structures are often, , located in areas where there are undetected or poorly defined faults with associated rock strength reduction. Where structures are sited near to, or across, such faults or fault-zones, they may sustain both shaking and ground deformation damage during an earthquake. Within this zone, management of seismic hazards needs to be based on accurate identification of the potential fault damage zone including the likely width of off-plane deformation. Lateral S-wave velocity variability provides one method of imaging and locating damage zones and off-plane deformation. This research demonstrates the utility of Multi-Channel Analysis of Surface Waves (MASW) to aid land-use planning in such fault-prone settings. Fundamentally, MASW uses surface wave dispersive characteristics to model a near surface profile of S-wave velocity variability as a proxy for bulk rock strength. The technique can aid fault-zone planning not only by locating and defining the extent of fault-zones, but also by defining within-zone variability that is readily correlated with measurable rock properties applicable to both foundation design and the distribution of surface deformation. The calibration sites presented here have well defined field relationships and known fault-zone exposure close to potential MASW survey sites. They were selected to represent a range of progressively softer lithologies from intact and fractured Torlesse Group basement hard rock (Dalethorpe) through softer Tertiary cover sediments (Boby’s Creek) and Quaternary gravels. This facilitated initial calibration of fracture intensity at a high-velocity-contrast site followed by exploration of the limits of shear zone resolution at lower velocity contrasts. Site models were constructed in AutoCAD in order to demonstrate spatial correlations between S-wave velocity and fault zone features. Site geology was incorporated in the models, along with geomorphology, river profiles, scanline locations and crosshole velocity measurement locations. Spatial data were recorded using a total-station survey. The interpreted MASW survey results are presented as two dimensional snapshot cross-sections of the three dimensional calibration-site models. These show strong correlations between MASW survey velocities and site geology, geomorphology, fluvial profiles and geotechnical parameters and observations. Correlations are particularly pronounced where high velocity contrasts exist, whilst weaker correlations are demonstrated in softer lithologies. Geomorphic correlations suggest that off-plane deformation can be imaged and interpreted in the presence of suitable topographic survey data. A promising new approach to in situ and laboratory soft-rock material and mass characterisation is also presented using a Ramset nail gun. Geotechnical investigations typically involve outcrop and laboratory scale determination of rock mass and material properties such as fracture density and unconfined compressive strength (UCS). This multi-scale approach is espoused by this study, with geotechnical and S-wave velocity data presented at multiple scales, from survey scale sonic velocity measurements, through outcrop scale scanline and crosshole sonic velocity measurements to laboratory scale property determination and sonic velocity measurements. S-wave velocities invariably increased with decreasing scale. These scaling relationships and strategies for dealing with them are investigated and presented. Finally, the MASW technique is applied to a concealed fault on the Taieri Ridge in Macraes Flat, Central Otago. Here, high velocity Otago Schist is faulted against low velocity sheared Tertiary and Quaternary sediments. This site highlights the structural sensitivity of the technique by apparently constraining the location of the principal fault, which had been ambiguous after standard processing of the seismic reflection data. Processing of the Taieri Ridge dataset has further led to the proposal of a novel surface wave imaging technique termed Swept Frequency Imaging (SFI). This inchoate technique apparently images the detailed structure of the fault-zone, and is in agreement with the conventionally-determined fault location and an existing partial trench. Overall, the results are promising and are expected to be supported by further trenching in the near future.
40

Site Characterization And Seismic Hazard Analysis With Local Site Effects For Microzonation Of Bangalore

Anbazhagan, P 07 1900 (has links)
Seismic hazard and microzonation of cities enable to characterize the potential seismic areas that need to be taken into account when designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of geotechnical microzonation maps will provide an effective solution for city planning and input to earthquake resistant design of structures in an area. Seismic hazard is the study of expected earthquake ground motions at any point on the earth. Microzonation is the process of sub division of region in to number of zones based on the earthquake effects in the local scale. Seismic microzonation is the process of estimating response of soil layers under earthquake excitation and thus the variation of ground motion characteristic on the ground surface. Geotechnical site characterization and assessment of site response during earthquakes is one of the crucial phases of seismic microzonation with respect to ground shaking intensity, attenuation, amplification rating and liquefaction susceptibility. Microzonation mapping of seismic hazards can be expressed in relative or absolute terms, on an urban block-by-block scale, based on local soil conditions (such as soil types) that affect ground shaking levels or vulnerability to soil liquefaction. Such maps would provide general guidelines for integrated planning of cities and in positioning the types of new structures that are most suited to an area, along with information on the relative damage potential of the existing structures in a region. In the present study an attempt has been made to characterize the site and to study the seismic hazard analysis considering the local site effects and to develop microzonation maps for Bangalore. Seismic hazard analysis and microzonation of Bangalore is addressed in this study in three parts: In the first part, estimation of seismic hazard using seismotectonic and geological information. Second part deals about site characterization using geotechnical and shallow geophysical techniques. An area of 220 sq.km, encompassing Bangalore Municipal Corporation has been chosen as the study area in this part of the investigation. There were over 150 lakes, though most of them are dried up due to erosion and encroachments leaving only 64 at present in an area of 220 sq. km and emphasizing the need to study site effects. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis (using the program SHAKE 2000) using both borehole SPT data and shear wave velocity survey data within an area of 220 sq. km. Further, field experiments using microtremor studies have also been carried out (jointly with NGRI) for evaluation of predominant frequency of the soil columns. The same has been assessed using 1-D ground response analysis and compared with microtremor results. Further, Seed and Idriss simplified approach has been adopted to evaluate the liquefaction susceptibility and liquefaction resistance assessment. Microzonation maps have been prepared for Bangalore city covering 220 sq. km area on a scale of 1:20000. Deterministic Seismic Hazard Analysis (DSHA) for Bangalore has been carried out by considering the past earthquakes, assumed subsurface fault rupture lengths and point source synthetic ground motion model. The seismic sources for region have been collected by considering seismotectonic atlas map of India and lineaments identified from satellite remote sensing images. Analysis of lineaments and faults help in understanding the regional seismotectonic activity of the area. Maximum Credible Earthquake (MCE) has been determined by considering the regional seismotectonic activity in about 350 km radius around Bangalore. Earthquake data are collected from United State Geological Survey (USGS), Indian Metrological Department (IMD), New Delhi; Geological Survey of India (GSI) and Amateur Seismic Centre (ASC), National Geophysical Research Institute (NGRI),Hyderabad; Centre for Earth Science Studies (CESS), Akkulam, Kerala; Gauribindanur (GB) Seismic station and other public domain sites. Source magnitude for each source is chosen from the maximum reported past earthquake close to that source and shortest distance from each source to Bangalore is arrived from the newly prepared seismotectonic map of the area. Using these details, and, attenuation relation developed for southern India by Iyengar and Raghukanth (2004), the peak ground acceleration (PGA) has been estimated. A parametric study has been carried out to find fault subsurface rupture length using past earthquake data and Wells and Coppersmith (1994) relation between the subsurface lengths versus earthquake magnitudes. Further seismological model developed by Boore (1983, 2003) SMSIM program has been used to generate synthetic ground motions from vulnerable sources identified in above two methods. From the above three approaches maximum PGA of 0.15g was estimated for Bangalore. This value was obtained for a maximum credible earthquake (MCE) having a moment magnitude of 5.1 from a source of Mandya-Channapatna-Bangalore lineament. Considering this lineament and MCE, a synthetic ground motion has been generated for 850 borehole locations and they are used to prepare PGA map at rock level. The past seismic data has been collected for almost 200 years from different sources such as IMD, BARC (Gauribidanur array), NGRI, CESS, ASC center, USGS, and other public domain data. The seismic data is seen to be homogenous for the last four decades irrespective of the magnitude. Seismic parameters were then evaluated using the data corresponding to the last four decades and also the mixed data (using Kijko’s analysis) for Bangalore region, which are found to be comparable with the earlier reported seismic parameters for south India. The probabilities of distance, magnitude and peak ground acceleration have been evaluated for the six most vulnerable sources using PSHA (Probabilistic Seismic Hazard Analysis). The mean annual rate of exceedance has been calculated for all the six sources at the rock level. The cumulative probability hazard curves have been generated at the bedrock level for peak ground acceleration and spectral acceleration. The spectral acceleration calculation corresponding to a period of 1sec and 5% damping are evaluated. For the design of structures, uniform hazard response spectrum (UHRS) at rock level is developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) values corresponding to 10% probability of exceedance in 50 years are comparable to the PGA values obtained in deterministic seismic hazard analysis (DSHA) and higher than Global Seismic Hazard Assessment Program (GSHAP) maps of Bhatia et.al (1997) for the Indian shield area. The 3-D subsurface model with geotechnical data has been generated for site characterization of Bangalore. The base map of Bangalore city (220sq.km) with several layers of information (such as Outer and Administrative boundaries, Contours, Highways, Major roads, Minor roads, Streets, Rail roads, Water bodies, Drains, Landmarks and Borehole locations) has been generated. GIS database for collating and synthesizing geotechnical data available with different sources and 3-dimensional view of soil stratum presenting various geotechnical parameters with depth in appropriate format has been developed. In the context of prediction of reduced level of rock (called as “engineering rock depth” corresponding to about Vs > 700 m/sec) in the subsurface of Bangalore and their spatial variability evaluated using Artificial Neural Network (ANN). Observed SPT ‘N’ values are corrected by applying necessary corrections, which can be used for engineering studies such as site response and liquefaction analysis. Site characterization has also been carried out using measured shear wave velocity with the help of shear wave velocity survey using MASW. MASW (Multichannel Analysis of Surface Wave) is a geophysical method, which generates a shear-wave velocity (Vs) profile (i.e., Vs versus depth) by analyzing Raleigh-type surface waves on a multichannel record. MASW system consisting of 24 channels Geode seismograph with 24 geophones of 4.5 Hz capacity were used in this investigation. The shear wave velocity of Bangalore subsurface soil has been measured and correlation has been developed for shear wave velocity (Vs) with the standard penetration tests (SPT) corrected ‘N’ values. About 58 one-dimensional (1-D) MASW surveys and 20 two-dimensional (2-D) MASW surveys has been carried out with in 220 sq.km Bangalore urban area. Dispersion curves and shear velocity 1-D and 2-D have been evaluated using SurfSeis software. Using 1-dimensional shear wave velocity, the average shear wave velocity of Bangalore soil has been evaluated for depths of 5m, 10m, 15m, 20m, 25m and 30m (Vs30) depths. The sub soil classification has been carried out for local site effect evaluation based on average shear wave velocity of 30m depth (Vs30) of sites using NEHRP (National Earthquake Hazard Research Programme) and IBC (International Building Code) classification. Bangalore falls into site class D type of soil. Mapping clearly indicates that the depth of soil obtained from MASW is closely matching with the soil layers in the bore logs. The measured shear wave velocity at 38 locations close to SPT boreholes, which are used to generate the correlation between the shear wave velocity and corrected ‘N’ values using a power fit. Also, developed relationship between shear wave velocity and corrected ‘N’ values corresponds well with the published relationships of Japan Road Association. Bangalore city, a fast growing urban center, with low to moderate earthquake history and highly altered soil structure (due to large reclamation of land) is been the focus of this work. There were over 150 lakes, though most of them are dried up due to erosion and encroachments leaving only 64 at present in an area of 220 sq km. In the present study, an attempt has been made to assess the site response using geotechnical, geophysical data and field studies. The subsurface profiles of the study area within 220sq.km area was represented by 170 geotechnical bore logs and 58 shear wave velocity profiles obtained by MASW survey. The data from these geotechnical and geophysical technique have been used to study the site response. These soil properties and synthetic ground motions for each borehole locations are further used to study the local site effects by conducting one-dimensional ground response analysis using the program SHAKE2000. The response and amplification spectrum have been evaluated for each layer of borehole location. The natural period of the soil column, peak spectral acceleration and frequency at peak spectral acceleration of each borehole has been evaluated and presented as maps. Predominant frequency obtained from both methods is compared; the correlation between corrected SPT ‘N’ value and low strain shear modulus has been generated. The noise was recorded at 54 different locations in 220sq.km area of Bangalore city using L4-3D short period sensors (CMG3T) equipped with digital data acquisition system. Predominant frequency obtained from ground response studies and microtremor measurement is comparable. To study the liquefaction hazard in Bangalore, the liquefaction hazard assessment has been carried out using standard penetration test (SPT) data and soil properties. Factor of Safety against liquefaction of soil layer has been evaluated based on the simplified procedure of Seed and Idriss (1971) and subsequent revisions of Seed et al (1983, 1985), Youd et al (2001) and Cetin et al (2004). Cyclic Stress Ratio (CSR) resulting from earthquake loading is calculated by considering moment magnitude of 5.1 and amplified peak ground acceleration. Cyclic Resistant Ratio (CRR) is arrived using the corrected SPT ‘N’ values and soil properties. Factor of safety against liquefaction is calculated using stress ratios and accounting necessary magnitude scaling factor for maximum credible earthquake. A simple spread sheet was developed to carryout the calculation for each bore log. The factor of safety against liquefaction is grouped together for the purpose of classification of Bangalore (220 sq. km) area for a liquefaction hazards. Using 2-D base map of Bangalore city, the liquefaction hazard map was prepared using AutoCAD and Arc GIS packages. The results are grouped as four groups for mapping and presented in the form of 2-dimensional maps. Liquefaction possibilities are also assessed conducting laboratory cyclic triaxial test using undisturbed soil samples collected at few locations.

Page generated in 0.0672 seconds