Spelling suggestions: "subject:"[een] MAXIMUM LIKELIHOOD ESTIMATION"" "subject:"[enn] MAXIMUM LIKELIHOOD ESTIMATION""
51 |
Comparing measures of fit for circular distributionsSun, Zheng 04 May 2010 (has links)
This thesis shows how to test the fit of a data set to a number of different models, using Watson’s U2 statistic for both grouped and continuous data. While Watson’s U2 statistic was introduced for continuous data, in recent work, the statistic has been adapted for grouped data. However, when using Watson’s U2 for continuous data, the asymptotic distribution is difficult to obtain, particularly, for some skewed circular distributions that contain four or five parameters. Until now, U2 asymptotic points are worked out only for uniform distribution and the von Mises distribution among all circular distributions. We give U2 asymptotic points for the wrapped exponential distributions, and we show that U2 asymptotic points when data are grouped is usually easier to obtain for other more advanced circular distributions.
In practice, all continuous data is grouped into cells whose width is decided by the accuracy of the measurement. It will be found useful to treat such data as grouped with sufficient number of cells in the examples to be analyzed. When the data are
treated as grouped, asymptotic points for U2 match well with the points when the data are treated as continuous. Asymptotic theory for U2 adopted for grouped data is given in the thesis. Monte Carlo studies show that, for reasonable sample sizes, the asymptotic points will give good approximations to the p-values of the test.
|
52 |
Estimation In The Simple Linear Regression Model With One-fold Nested ErrorUlgen, Burcin Emre 01 June 2005 (has links) (PDF)
In this thesis, estimation in simple linear regression model with one-fold nested error is studied.
To estimate the fixed effect parameters, generalized least squares and maximum likelihood estimation procedures are reviewed. Moreover, Minimum Norm Quadratic Estimator (MINQE), Almost Unbiased Estimator (AUE) and Restricted Maximum Likelihood Estimator (REML) of variance of primary units are derived.
Also, confidence intervals for the fixed effect parameters and the variance components are studied. Finally, the aforesaid estimation techniques and confidence intervals are applied to a real-life data and the results are presented
|
53 |
Stochastic volatility : maximum likelihood estimation and specification testingWhite, Scott Ian January 2006 (has links)
Stochastic volatility (SV) models provide a means of tracking and forecasting the variance of financial asset returns. While SV models have a number of theoretical advantages over competing variance modelling procedures they are notoriously difficult to estimate. The distinguishing feature of the SV estimation literature is that those algorithms that provide accurate parameter estimates are conceptually demanding and require a significant amount of computational resources to implement. Furthermore, although a significant number of distinct SV specifications exist, little attention has been paid to how one would choose the appropriate specification for a given data series. Motivated by these facts, a likelihood based joint estimation and specification testing procedure for SV models is introduced that significantly overcomes the operational issues surrounding existing estimators. The estimation and specification testing procedures in this thesis are made possible by the introduction of a discrete nonlinear filtering (DNF) algorithm. This procedure uses the nonlinear filtering set of equations to provide maximum likelihood estimates for the general class of nonlinear latent variable problems which includes the SV model class. The DNF algorithm provides a fast and accurate implementation of the nonlinear filtering equations by treating the continuously valued state-variable as if it were a discrete Markov variable with a large number of states. When the DNF procedure is applied to the standard SV model, very accurate parameter estimates are obtained. Since the accuracy of the DNF is comparable to other procedures, its advantages are seen as ease and speed of implementation and the provision of online filtering (prediction) of variance. Additionally, the DNF procedure is very flexible and can be used for any dynamic latent variable problem with closed form likelihood and transition functions. Likelihood based specification testing for non-nested SV specifications is undertaken by formulating and estimating an encompassing model that nests two competing SV models. Likelihood ratio statistics are then used to make judgements regarding the optimal SV specification. The proposed framework is applied to SV models that incorporate either extreme returns or asymmetries.
|
54 |
Εκτίμηση των παραμέτρων της διπαραμετρικής εκθετικής κατανομής από ένα διπλά διακεκομμένο δείγμαΔασκαλάκη, Ιωάννα 05 January 2011 (has links)
Η παρούσα μεταπτυχιακή διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής Θεωρίας Αποφάσεων και ειδικότερα στην εκτίμηση των παραμέτρων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής με παράμετρο θέσης μ και παράμετρο κλίμακος σ. Θεωρούμε ένα δείγμα n τυχαίων μεταβλητών, καθεμία από τις οποίες ακολουθεί την διπαραμετρική εκθετική κατανομή. Λογοκρίνουμε κάποιες αρχικές παρατηρήσεις και έστω ότι τερματίζουμε το πείραμά μας πριν αποτύχουν όλες οι συνιστώσες. Τότε προκύπτει ένα διπλά διακεκομμένο δείγμα διατεταγμένων παρατηρήσεων. Η εκτίμηση των παραμέτρων της διπαραμετρικής εκθετικής κατανομής, γίνεται από το συγκεκριμένο δείγμα.
Πρώτα μελετάμε κάποιες βασικές έννοιες της Στατιστικής και της Εκτιμητικής και βρίσκουμε εκτιμητές για τις παραμέτρους. Πιο συγκεκριμένα, βρίσκουμε αμερόληπτο εκτιμητή ελάχιστης διασποράς, εκτιμητή μέγιστης πιθανοφάνειας, εκτιμητή με την μέθοδο των ροπών και τον βέλτιστο αναλλοίωτο εκτιμητή σε συγκεκριμένη κλάση, αντίστοιχα και για τις δύο παραμέτρους. Σαν βελτίωση των προηγούμενων εκτιμητών, ακολουθούν οι εκτιμητές τύπου Stein και, ολοκληρώνοντας, ασχολούμαστε με πρόβλεψη κατά Bayes για μια μελλοντική παρατήρηση / The present master thesis deals with the estimation of the location parameter μ and the scale parameter σ of the two-parameter exponential distribution. A sample n of random variables from the two-parameter exponential distribution is assumed. Part of the initial variables is censored and the experiment is terminated before all the components fail. A doubly censored sample emerges from which the two-parameter exponential distribution's parameters are estimated.
First of all, basic Statistics' concepts are studied in order to estimate the parameters. More specifically, the Minimum Variance Unbiased Estimator (MVUE), the Maximum Likelihood Estimator (MLE), the estimator based on the Method of Moments and the best affine equivariant estimator are computed for both the parameters. To improve the previous estimators, the Stein method is used and to conclude the Bayes prediction is used for future observation
|
55 |
[en] MAXIMUM LIKELIHOOD ESTIMATION OF THE DIRECTION-OF-ARRIVAL OF PSK MODULATED CARRIERS / [pt] ESTIMAÇÃO DE MÁXIMA VEROSSIMILHANÇA DA DIREÇÃO DE CHEGADA DE PORTADORAS PSKMARCIO ALBUQUERQUE DE SOUZA 17 November 2004 (has links)
[pt] Em sistemas de comunicações móveis, a modulação digital em
fase (PSK)é amplamente utilizada em esquemas de transmissão
em rádio-propagação. Trabalhos anteriores consideraram
alguns métodos baseados no critério de máxima
verossimilhança (MV) para estimação de direção-de-chegada de
sinais genéricos que atingem um conjunto (array) de
sensores. Esta tese propõe um novo estimador MV para a
direção-de-chegada, desenvolvido especificamente para
sistemas de comunicação PSK. Dois modelos de transmissão
são concebidos para estimação dos parâmetros: um mais
idealizado, considerando todas as portadoras alinhadas no
tempo com o receptor, e outro que considera este
desalinhamento na forma de retardo. O número de parâmetros
a serem conjuntamente estimados é significativamente
reduzido ao se calcular o valor esperado dos sinais medidos
no array de antenas com relação µas fases de modulação
(dados de informação). O desempenho do estimador em vários
cenários simulados é apresentado e comparado ao desempenho
do estimador MV clássico desenvolvido sem considerar uma
estrutura específica para o sinal. Limitantes de Cramér-Rao
para os cenários de portadora única também são calculados.
O método proposto se mostra mais robusto por apresentar
melhor desempenho que o estimador MV clássico em todas as
simulações. / [en] In mobile communication systems, phase shift keying (PSK)
modulation is widely used in digital transmission schemes.
Previous works have considered several maximum likelihood
(ML) methods for the direction-of-arrival (DOA) estimation
of generic signals reaching a phased-array of sensors. This
thesis proposes a new ML DOA estimator designed to be used
in PSK communication systems. Two transmission models are
considered for parameter estimation: a simpler one,
considering all carrier clocks time-aligned with the
receiver clock, and another that considers this
misalignment as a delay for each carrier. The number of
parameters to be jointly estimated is significantly reduced
when the expected value of the antenna array measured
signals with respect to the modulation phases is evaluated.
The estimator performance in several simulation scenarios
is presented and compared to the performance of a classic
ML estimator designed for all sorts of signal models.
Cramér-Rao bounds for single carrier scenarios are also
evaluated. The proposed method robustly outperforms the
classic ML estimator in all simulations.
|
56 |
Statistické úlohy pro Markovské procesy se spojitým časem / Statistical inference for Markov processes with continuous timeKřepinská, Dana January 2014 (has links)
Tato diplomová práce se zabývá odhadováním matice intenzit Markovova pro- cesu se spojitým časem na základě diskrétně pozorovaných dat. Začátek práce je věnován jednoduššímu odhadu ze spojité trajektorie pomocí metody maximální věrohodnosti. Dále je zde popsán odhad z diskrétní trajektorie přes výpočet ma- tice pravděpodobností přechodu. Následně je velmi podrobně rozebrán EM al- goritmus, který předchozí odhad zpřesňuje. Na závěr teoretické části je uvedena metoda odhadu zvaná Monte Carlo Markov Chain. Všechny postupy jsou zároveň implementovány v počítačovém softwaru a prezentace jejich výsledk· je obsahem druhé části práce. V té jsou porovnané odhady pro denní, týdenní a měsíční po- zorování a také pro pětiletou a desetiletou pozorovanou trajektorii. K výsledk·m jsou připojeny odhady rozptyl· a intervaly spolehlivosti. 1
|
57 |
Finding a Representative Distribution for the Tail Index Alpha, α, for Stock Return Data from the New York Stock ExchangeBurns, Jett 01 May 2022 (has links)
Statistical inference is a tool for creating models that can accurately display real-world events. Special importance is given to the financial methods that model risk and large price movements. A parameter that describes tail heaviness, and risk overall, is α. This research finds a representative distribution that models α. The absolute value of standardized stock returns from the Center for Research on Security Prices are used in this research. The inference is performed using R. Approximations for α are found using the ptsuite package. The GAMLSS package employs maximum likelihood estimation to estimate distribution parameters using the CRSP data. The distributions are selected by using AIC and worm plots. The Skew t family is found to be representative for the parameter α based on subsets of the CRSP data. The Skew t type 2 distribution is robust for multiple subsets of values calculated from the CRSP stock return data.
|
58 |
Monte Carlo Examination of Static and Dynamic Student t Regression ModelsPaczkowski, Remi 07 January 1998 (has links)
This dissertation examines a number of issues related to Static and Dynamic Student t Regression Models.
The Static Student t Regression Model is derived and transformed to an operational form. The operational form is then examined in a series of Monte Carlo experiments. The model is judged based on its usefulness for estimation and testing and its ability to model the heteroskedastic conditional variance. It is also compared with the traditional Normal Linear Regression Model.
Subsequently the analysis is broadened to a dynamic setup. The Student t Autoregressive Model is derived and a number of its operational forms are considered. Three forms are selected for a detailed examination in a series of Monte Carlo experiments. The models’ usefulness for estimation and testing is evaluated, as well as their ability to model the conditional variance. The models are also compared with the traditional Dynamic Linear Regression Model. / Ph. D.
|
59 |
Inequity-Averse Preferences in the Principal-Agent FrameworkSchumacher, Tyler R. 31 July 2018 (has links)
No description available.
|
60 |
Multilevel Mixture IRT Modeling for the Analysis of Differential Item FunctioningDras, Luke 14 August 2023 (has links) (PDF)
A multilevel mixture IRT (MMixIRT) model for DIF analysis has been proposed as a solution to gain greater insight on the source of nuisance factors which reduce the reliability and validity of educational assessments. The purpose of this study was to investigate the efficacy of a MMix2PL model in detecting DIF across a broad set of conditions in hierarchically structured, dichotomous data. Monte Carlo simulation was performed to generate examinee response data with conditions common in the field of education. These include (a) two instrument lengths, (b) nine hierarchically structured sample sizes, (c) four latent class features, and (d) eight distinct DIF characteristics, thus allowing for an examination with 576 unique data conditions. DIF analysis was performed using an iterative IRT-based ordinal logistic regression technique, with the focal group identified through estimation of latent classes from a multilevel mixture model. For computational efficiency in analyzing 50 replications for each condition, model parameters were recovered using maximum likelihood estimation (MLE) with the expectation maximization algorithm. Performance of the MMix2PL model for DIF analysis was evaluated by (a) the accuracy in recovering the true class structure, (b) the accuracy of membership classification, and (c) the sensitivity in detecting DIF items and Type I error rates. Results from this study demonstrate that the model is predominantly influenced by instrument length and separation between the class mean abilities, referred to as impact. Enumeration accuracy improved by an average of 40% when analyzing the short 10-item instrument, but with 100 clusters enumeration accuracy was high regardless of the number of items. Classification accuracy was substantially influenced by the presence of impact. Under conditions with no impact, classification was unsuccessful as the matching between model-based class assignments and examinees' true classes averaged only 53.2%. At best, with impact of one standard deviation, classification accuracy averaged between 66.5% to 70.3%. Misclassification errors were then propagated forward to influence the performance of the DIF analysis. Detection power was poor, averaging only 0.34 across the analysis iterations that reached convergence. Additionally, the short 10-item instrument proved challenging for MLE, a condition in which a Bayesian estimation method appears necessary. Finally, this paper provides recommendations on data conditions which improve performance of the MMix2PL model for DIF analysis. Additionally, suggestions for several improvements to the MMix2PL analysis process, which have potential to improve the feasibility of the model for DIF analysis, are summarized.
|
Page generated in 0.266 seconds