• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 19
  • 9
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 176
  • 176
  • 128
  • 114
  • 41
  • 35
  • 32
  • 29
  • 28
  • 25
  • 23
  • 15
  • 15
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Semantics-oriented low power architecture

Ballapuram, Chinnakrishnan S. 01 April 2008 (has links)
Innovations in the microarchitecture and prominent advances in the semiconductor process technology enable sophisticated and powerful microprocessors. However, they also lead to increased power consumption. The main contribution of the thesis is the demonstration of Semantics-Oriented Low Power Architecture techniques that use the semantics of memory references and variables used in an application program to reduce the power consumption in the memory sub-system of a microprocessor. The Semantic-Aware Multilateral Partitioning (SAM) technique reduces the cache and TLB power consumption by decoupling the data TLB lookups and the data cache accesses, based on the semantic regions defined by the programming languages and the software convention, into discrete reference sub-streams, namely, stack, global static, and heap. To reduce the power consumed by the snoops in Chip Multiprocessor, we propose a hardware technique called Selective Snoop Probe (SSP) and a compiler-based hardware supported technique called Essential Snoop Probe (ESP) that use the properties of the program variables. By selectively sending the snoop probes, the SSP and ESP techniques relax the conservative nature of the cache coherency protocol and its implementation to reduce power and improve performance.
82

Microarchitectural techniques to reduce energy consumption in the memory hierarchy

Ghosh, Mrinmoy 03 April 2009 (has links)
This thesis states that dynamic profiling of the memory reference stream can improve energy and performance in the memory hierarchy. The research presented in this theses provides multiple instances of using lightweight hardware structures to profile the memory reference stream. The objective of this research is to develop microarchitectural techniques to reduce energy consumption at different levels of the memory hierarchy. Several simple and implementable techniques were developed as a part of this research. One of the techniques identifies and eliminates redundant refresh operations in DRAM and reduces DRAM refresh power. Another, reduces leakage energy in L2 and higher level caches for multiprocessor systems. The emphasis of this research has been to develop several techniques of obtaining energy savings in caches using a simple hardware structure called the counting Bloom filter (CBF). CBFs have been used to predict L2 cache misses and obtain energy savings by not accessing the L2 cache on a predicted miss. A simple extension of this technique allows CBFs to do way-estimation of set associative caches to reduce energy in cache lookups. Another technique using CBFs track addresses in a Virtual Cache and reduce false synonym lookups. Finally this thesis presents a technique to reduce dynamic power consumption in level one caches using significance compression. The significant energy and performance improvements demonstrated by the techniques presented in this thesis suggest that this work will be of great value for designing memory hierarchies of future computing platforms.
83

Scratch-pad memory management for static data aggregates

Li, Lian, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Scratch-pad memory (SPM), a fast on-chip SRAM managed by software, is widely used in embedded systems. Compared to hardware-managed cache, SPM can be more efficient in performance, power and area cost, and has the added advantage of better time predictability. In this thesis, SPMs should be seen in a general context. For example, in stream processors, a software-managed stream register file is usually used to stage data to and from off-chip memory. In IBM's Cell architecture, each co-processor has a software-managed local store for keeping data and instructions. SPM management is critical for SPM-based embedded systems. In this thesis, we propose two novel methodologies, the memory colouring methodology and the perfect colouring methodology, to place the static data aggregates such as arrays and structs of a program in SPM. Our methodologies are dynamic in the sense that some data aggregates can be swapped into and out of SPM during program execution. To this end, a live range splitting heuristic is introduced in order to create potential data transfer statements between SPM and off-chip memory. The memory colouring methodology is a general-purpose compiler approach. The novelty of this approach lies in partitioning an SPM into a pseudo register file then generalising existing graph colouring algorithms for register allocation to colour data aggregates. In this thesis, a scheme for partitioning an SPM into a pseudo register file is introduced. This methodology is inter-procedural and therefore operates on the interference graph for the data aggregates in the whole program. Different graph colouring algorithms may give rise to different results due to live range splitting and spilling heuristics used. As a result, two representative graph colouring algorithms, George and Appel's iterative-coalescing and Park and Moon's optimistic-coalescing, are generalised and evaluated for SPM allocation. Like memory colouring, perfect colouring is also inter-procedural. The novelty of this second methodology lies in formulating the SPM allocation problem as an interval colouring problem. The interval colouring problem is an NP problem and no widely-accepted approximation algorithms exist. The key observation is that the interference graphs for data aggregates in many embedded applications form a special class of superperfect graphs. This has led to the development of two additional SPM allocation algorithms. While differing in whether live range splits and spills are done sequentially or together, both algorithms place data aggregates in SPM based on the cliques in an interference graph. In both cases, we guarantee optimally that all data aggregates in an interference graph can be placed in SPM if the given SPM size is no smaller than the chromatic number of the graph. We have developed two memory colouring algorithms and two perfect colouring algorithms for SPM allocation. We have evaluated them using a set of embedded applications. Our results show that both methodologies are efficient and effective in handling large-scale embedded applications. While neither methodology outperforms the other consistently, perfect colouring has yielded better overall results in the set of benchmarks used in our experiments. All these algorithms are expected to be valuable. For example, they can be made available as part of the same compiler framework to assist the embedded designer with exploring a large number of optimisation opportunities for a particular embedded application.
84

Scratch-pad memory management for static data aggregates

Li, Lian, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Scratch-pad memory (SPM), a fast on-chip SRAM managed by software, is widely used in embedded systems. Compared to hardware-managed cache, SPM can be more efficient in performance, power and area cost, and has the added advantage of better time predictability. In this thesis, SPMs should be seen in a general context. For example, in stream processors, a software-managed stream register file is usually used to stage data to and from off-chip memory. In IBM's Cell architecture, each co-processor has a software-managed local store for keeping data and instructions. SPM management is critical for SPM-based embedded systems. In this thesis, we propose two novel methodologies, the memory colouring methodology and the perfect colouring methodology, to place the static data aggregates such as arrays and structs of a program in SPM. Our methodologies are dynamic in the sense that some data aggregates can be swapped into and out of SPM during program execution. To this end, a live range splitting heuristic is introduced in order to create potential data transfer statements between SPM and off-chip memory. The memory colouring methodology is a general-purpose compiler approach. The novelty of this approach lies in partitioning an SPM into a pseudo register file then generalising existing graph colouring algorithms for register allocation to colour data aggregates. In this thesis, a scheme for partitioning an SPM into a pseudo register file is introduced. This methodology is inter-procedural and therefore operates on the interference graph for the data aggregates in the whole program. Different graph colouring algorithms may give rise to different results due to live range splitting and spilling heuristics used. As a result, two representative graph colouring algorithms, George and Appel's iterative-coalescing and Park and Moon's optimistic-coalescing, are generalised and evaluated for SPM allocation. Like memory colouring, perfect colouring is also inter-procedural. The novelty of this second methodology lies in formulating the SPM allocation problem as an interval colouring problem. The interval colouring problem is an NP problem and no widely-accepted approximation algorithms exist. The key observation is that the interference graphs for data aggregates in many embedded applications form a special class of superperfect graphs. This has led to the development of two additional SPM allocation algorithms. While differing in whether live range splits and spills are done sequentially or together, both algorithms place data aggregates in SPM based on the cliques in an interference graph. In both cases, we guarantee optimally that all data aggregates in an interference graph can be placed in SPM if the given SPM size is no smaller than the chromatic number of the graph. We have developed two memory colouring algorithms and two perfect colouring algorithms for SPM allocation. We have evaluated them using a set of embedded applications. Our results show that both methodologies are efficient and effective in handling large-scale embedded applications. While neither methodology outperforms the other consistently, perfect colouring has yielded better overall results in the set of benchmarks used in our experiments. All these algorithms are expected to be valuable. For example, they can be made available as part of the same compiler framework to assist the embedded designer with exploring a large number of optimisation opportunities for a particular embedded application.
85

Scratch-pad memory management for static data aggregates

Li, Lian, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Scratch-pad memory (SPM), a fast on-chip SRAM managed by software, is widely used in embedded systems. Compared to hardware-managed cache, SPM can be more efficient in performance, power and area cost, and has the added advantage of better time predictability. In this thesis, SPMs should be seen in a general context. For example, in stream processors, a software-managed stream register file is usually used to stage data to and from off-chip memory. In IBM's Cell architecture, each co-processor has a software-managed local store for keeping data and instructions. SPM management is critical for SPM-based embedded systems. In this thesis, we propose two novel methodologies, the memory colouring methodology and the perfect colouring methodology, to place the static data aggregates such as arrays and structs of a program in SPM. Our methodologies are dynamic in the sense that some data aggregates can be swapped into and out of SPM during program execution. To this end, a live range splitting heuristic is introduced in order to create potential data transfer statements between SPM and off-chip memory. The memory colouring methodology is a general-purpose compiler approach. The novelty of this approach lies in partitioning an SPM into a pseudo register file then generalising existing graph colouring algorithms for register allocation to colour data aggregates. In this thesis, a scheme for partitioning an SPM into a pseudo register file is introduced. This methodology is inter-procedural and therefore operates on the interference graph for the data aggregates in the whole program. Different graph colouring algorithms may give rise to different results due to live range splitting and spilling heuristics used. As a result, two representative graph colouring algorithms, George and Appel's iterative-coalescing and Park and Moon's optimistic-coalescing, are generalised and evaluated for SPM allocation. Like memory colouring, perfect colouring is also inter-procedural. The novelty of this second methodology lies in formulating the SPM allocation problem as an interval colouring problem. The interval colouring problem is an NP problem and no widely-accepted approximation algorithms exist. The key observation is that the interference graphs for data aggregates in many embedded applications form a special class of superperfect graphs. This has led to the development of two additional SPM allocation algorithms. While differing in whether live range splits and spills are done sequentially or together, both algorithms place data aggregates in SPM based on the cliques in an interference graph. In both cases, we guarantee optimally that all data aggregates in an interference graph can be placed in SPM if the given SPM size is no smaller than the chromatic number of the graph. We have developed two memory colouring algorithms and two perfect colouring algorithms for SPM allocation. We have evaluated them using a set of embedded applications. Our results show that both methodologies are efficient and effective in handling large-scale embedded applications. While neither methodology outperforms the other consistently, perfect colouring has yielded better overall results in the set of benchmarks used in our experiments. All these algorithms are expected to be valuable. For example, they can be made available as part of the same compiler framework to assist the embedded designer with exploring a large number of optimisation opportunities for a particular embedded application.
86

Scratch-pad memory management for static data aggregates

Li, Lian, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Scratch-pad memory (SPM), a fast on-chip SRAM managed by software, is widely used in embedded systems. Compared to hardware-managed cache, SPM can be more efficient in performance, power and area cost, and has the added advantage of better time predictability. In this thesis, SPMs should be seen in a general context. For example, in stream processors, a software-managed stream register file is usually used to stage data to and from off-chip memory. In IBM's Cell architecture, each co-processor has a software-managed local store for keeping data and instructions. SPM management is critical for SPM-based embedded systems. In this thesis, we propose two novel methodologies, the memory colouring methodology and the perfect colouring methodology, to place the static data aggregates such as arrays and structs of a program in SPM. Our methodologies are dynamic in the sense that some data aggregates can be swapped into and out of SPM during program execution. To this end, a live range splitting heuristic is introduced in order to create potential data transfer statements between SPM and off-chip memory. The memory colouring methodology is a general-purpose compiler approach. The novelty of this approach lies in partitioning an SPM into a pseudo register file then generalising existing graph colouring algorithms for register allocation to colour data aggregates. In this thesis, a scheme for partitioning an SPM into a pseudo register file is introduced. This methodology is inter-procedural and therefore operates on the interference graph for the data aggregates in the whole program. Different graph colouring algorithms may give rise to different results due to live range splitting and spilling heuristics used. As a result, two representative graph colouring algorithms, George and Appel's iterative-coalescing and Park and Moon's optimistic-coalescing, are generalised and evaluated for SPM allocation. Like memory colouring, perfect colouring is also inter-procedural. The novelty of this second methodology lies in formulating the SPM allocation problem as an interval colouring problem. The interval colouring problem is an NP problem and no widely-accepted approximation algorithms exist. The key observation is that the interference graphs for data aggregates in many embedded applications form a special class of superperfect graphs. This has led to the development of two additional SPM allocation algorithms. While differing in whether live range splits and spills are done sequentially or together, both algorithms place data aggregates in SPM based on the cliques in an interference graph. In both cases, we guarantee optimally that all data aggregates in an interference graph can be placed in SPM if the given SPM size is no smaller than the chromatic number of the graph. We have developed two memory colouring algorithms and two perfect colouring algorithms for SPM allocation. We have evaluated them using a set of embedded applications. Our results show that both methodologies are efficient and effective in handling large-scale embedded applications. While neither methodology outperforms the other consistently, perfect colouring has yielded better overall results in the set of benchmarks used in our experiments. All these algorithms are expected to be valuable. For example, they can be made available as part of the same compiler framework to assist the embedded designer with exploring a large number of optimisation opportunities for a particular embedded application.
87

Scratch-pad memory management for static data aggregates

Li, Lian, Computer Science & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Scratch-pad memory (SPM), a fast on-chip SRAM managed by software, is widely used in embedded systems. Compared to hardware-managed cache, SPM can be more efficient in performance, power and area cost, and has the added advantage of better time predictability. In this thesis, SPMs should be seen in a general context. For example, in stream processors, a software-managed stream register file is usually used to stage data to and from off-chip memory. In IBM's Cell architecture, each co-processor has a software-managed local store for keeping data and instructions. SPM management is critical for SPM-based embedded systems. In this thesis, we propose two novel methodologies, the memory colouring methodology and the perfect colouring methodology, to place the static data aggregates such as arrays and structs of a program in SPM. Our methodologies are dynamic in the sense that some data aggregates can be swapped into and out of SPM during program execution. To this end, a live range splitting heuristic is introduced in order to create potential data transfer statements between SPM and off-chip memory. The memory colouring methodology is a general-purpose compiler approach. The novelty of this approach lies in partitioning an SPM into a pseudo register file then generalising existing graph colouring algorithms for register allocation to colour data aggregates. In this thesis, a scheme for partitioning an SPM into a pseudo register file is introduced. This methodology is inter-procedural and therefore operates on the interference graph for the data aggregates in the whole program. Different graph colouring algorithms may give rise to different results due to live range splitting and spilling heuristics used. As a result, two representative graph colouring algorithms, George and Appel's iterative-coalescing and Park and Moon's optimistic-coalescing, are generalised and evaluated for SPM allocation. Like memory colouring, perfect colouring is also inter-procedural. The novelty of this second methodology lies in formulating the SPM allocation problem as an interval colouring problem. The interval colouring problem is an NP problem and no widely-accepted approximation algorithms exist. The key observation is that the interference graphs for data aggregates in many embedded applications form a special class of superperfect graphs. This has led to the development of two additional SPM allocation algorithms. While differing in whether live range splits and spills are done sequentially or together, both algorithms place data aggregates in SPM based on the cliques in an interference graph. In both cases, we guarantee optimally that all data aggregates in an interference graph can be placed in SPM if the given SPM size is no smaller than the chromatic number of the graph. We have developed two memory colouring algorithms and two perfect colouring algorithms for SPM allocation. We have evaluated them using a set of embedded applications. Our results show that both methodologies are efficient and effective in handling large-scale embedded applications. While neither methodology outperforms the other consistently, perfect colouring has yielded better overall results in the set of benchmarks used in our experiments. All these algorithms are expected to be valuable. For example, they can be made available as part of the same compiler framework to assist the embedded designer with exploring a large number of optimisation opportunities for a particular embedded application.
88

Performance of parallel I/O data distribution strategies for space-sharing policies /

Wang, Liuhong, January 1900 (has links)
Thesis (M. Sc.)--Carleton University, 2004. / Includes bibliographical references (p. 81-86). Also available in electronic format on the Internet.
89

Using virtual memory to improve cache and TLB performance /

Romer, Theodore H. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (p. [137]-143).
90

New neural network structures for problems with high-dimensional input space /

Li, Chien-Kuo, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 109-112). Also available on the Internet.

Page generated in 0.0862 seconds