• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 19
  • 9
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 176
  • 176
  • 128
  • 114
  • 41
  • 35
  • 32
  • 29
  • 28
  • 25
  • 23
  • 15
  • 15
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Simple, safe, and efficient memory management using linear pointers

Liu, Likai 22 January 2016 (has links)
Efficient and safe memory management is a hard problem. Garbage collection promises automatic memory management but comes with the cost of increased memory footprint, reduced parallelism in multi-threaded programs, unpredictable pause time, and intricate tuning parameters balancing the program's workload and designated memory usage in order for an application to perform reasonably well. Existing research mitigates the above problems to some extent, but programmer error could still cause memory leak by erroneously keeping memory references when they are no longer needed. We need a methodology for programmers to become resource aware, so that efficient, scalable, predictable and high performance programs may be written without the fear of resource leak. Linear logic has been recognized as the formalism of choice for resource tracking. It requires explicit introduction and elimination of resources and guarantees that a resource cannot be implicitly shared or abandoned, hence must be linear. Early languages based on linear logic focused on Curry-Howard correspondence. They began by limiting the expressive powers of the language and then reintroduced them by allowing controlled sharing which is necessary for recursive functions. However, only by deviating from Curry-Howard correspondence could later development actually address programming errors in resource usage. The contribution of this dissertation is a simple, safe, and efficient approach introducing linear resource ownership semantics into C++ (which is still a widely used language after 30 years since inception) through linear pointer, a smart pointer inspired by linear logic. By implementing various linear data structures and a parallel, multi-threaded memory allocator based on these data structures, this work shows that linear pointer is practical and efficient in the real world, and that it is possible to build a memory management stack that is entirely leak free. The dissertation offers some closing remarks on the difficulties a formal system would encounter when reasoning about a concurrent linear data algorithm, and what might be done to solve these problems.
112

A Functional Approach to Memory-Safe Operating Systems

Leslie, Rebekah 01 January 2011 (has links)
Purely functional languages--with static type systems and dynamic memory management using garbage collection--are a known tool for helping programmers to reduce the number of memory errors in programs. By using such languages, we can establish correctness properties relating to memory-safety through our choice of implementation language alone. Unfortunately, the language characteristics that make purely functional languages safe also make them more difficult to apply in a low-level domain like operating systems construction. The low-level features that support the kinds of hardware manipulations required by operating systems are not typically available in memory-safe languages with garbage collection. Those that are provided may have the ability to violate memory- and type-safety, destroying the guarantees that motivate using such languages in the first place. This work demonstrates that it is possible to bridge the gap between the requirements of operating system implementations and the features of purely functional languages without sacrificing type- and memory-safety. In particular, we show that this can be achieved by isolating the potentially unsafe memory operations required by operating systems in an abstraction layer that is well integrated with a purely functional language. The salient features of this abstraction layer are that the operations it exposes are memory-safe and yet sufficiently expressive to support the implementation of realistic operating systems. The abstraction layer enables systems programmers to perform all of the low-level tasks necessary in an OS implementation, such as manipulating an MMU and executing user-level programs, without compromising the static memory-safety guarantees of programming in a purely functional language. A specific contribution of this work is an analysis of memory-safety for the abstraction layer by formalizing a meaning for memory-safety in the presence of virtual-memory using a novel application of noninterference security policies. In addition, we evaluate the expressiveness of the abstraction layer by implementing the L4 microkernel API, which has a flexible set of virtual memory management operations.
113

Hardware related optimizations in a Java virtual machine

Gu, Dayong. January 2007 (has links)
No description available.
114

JDiet: Footprint Reduction for Memory-Constrained Systems

Huffman, Michael John 01 June 2009 (has links) (PDF)
Main memory remains a scarce computing resource. Even though main memory is becoming more abundant, software applications are inexorably engineered to consume as much memory as is available. For example, expert systems, scientific computing, data mining, and embedded systems commonly suffer from the lack of main memory availability. This thesis introduces JDiet, an innovative memory management system for Java applications. The goal of JDiet is to provide the developer with a highly configurable framework to reduce the memory footprint of a memory-constrained system, enabling it to operate on much larger working sets. Inspired by buffer management techniques common in modern database management systems, JDiet frees main memory by evicting non-essential data to a disk-based store. A buffer retains a fixed amount of managed objects in main memory. As non-resident objects are accessed, they are swapped from the store to the buffer using an extensible replacement policy. While the Java virtual machine naïvely delegates virtual memory management to the operating system, JDiet empowers the system designer to select both the managed data and replacement policy. Guided by compile-time configuration, JDiet performs aspect-oriented bytecode engineering, requiring no explicit coupling to the source or compiled code. The results of an experimental evaluation of the effectiveness of JDiet are reported. A JDiet-enabled XML DOM parser is capable of parsing and processing over 200% larger input documents by sacrificing less than an order of magnitude in performance.
115

Real-time Design Constraints in Implementing Active Vibration Control Algorithms.

Hossain, M. Alamgir, Tokhi, M.O. January 2006 (has links)
No / Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.
116

Big Vector: An External Memory Algorithm and Data Structure

Upadhyay, Abhyudaya 16 October 2015 (has links)
No description available.
117

Algorithmic and Software System Support to Accelerate Data Processing in CPU-GPU Hybrid Computing Environments

Wang, Kaibo January 2015 (has links)
No description available.
118

A Context-Aware Approach to Android Memory Management

Muthu, Srinivas 14 November 2016 (has links)
No description available.
119

Impact of data dependencies for real-time high performance computing.

Hossain, M. Alamgir, Kabir, U., Tokhi, M.O. January 2002 (has links)
No / This paper presents an investigation into the impact of data dependencies in real-time high performance sequential and parallel processing. An adaptive active vibration control algorithm is considered to demonstrate the impact of data dependencies in real-time computing. The algorithm is analysed in detail to explore the inherent data dependencies. To minimize the impact of data dependencies, an investigation into reducing memory access in sequential computing is provided. The impact of data dependencies with various interconnections is also explored and demonstrated in real-time parallel processing through a set of experiments.
120

A design methodology for robust, energy-efficient, application-aware memory systems

Chatterjee, Subho 28 August 2012 (has links)
Memory design is a crucial component of VLSI system design from area, power and performance perspectives. To meet the increasingly challenging system specifications, architecture, circuit and device level innovations are required for existing memory technologies. Emerging memory solutions are widely explored to cater to strict budgets. This thesis presents design methodologies for custom memory design with the objective of power-performance benefits across specific applications. Taking example of STTRAM (spin transfer torque random access memory) as an emerging memory candidate, the design space is explored to find optimal energy design solution. A thorough thermal reliability study is performed to estimate detection reliability challenges and circuit solutions are proposed to ensure reliable operation. Adoption of the application-specific optimal energy solution is shown to yield considerable energy benefits in a read-heavy application called MBC (memory based computing). Circuit level customizations are studied for the volatile SRAM (static random access memory) memory, which will provide improved energy-delay product (EDP) for the same MBC application. Memory design has to be aware of upcoming challenges from not only the application nature but also from the packaging front. Taking 3D die-folding as an example, SRAM performance shift under die-folding is illustrated. Overall the thesis demonstrates how knowledge of the system and packaging can help in achieving power efficient and high performance memory design.

Page generated in 0.0674 seconds