Spelling suggestions: "subject:"[een] MICROHARDNESS"" "subject:"[enn] MICROHARDNESS""
121 |
Studium defektů ve slitinách na bázi Fe3Al metodou pozitronové anihilační spektroskopie / Studium defektů ve slitinách na bázi Fe3Al metodou pozitronové anihilační spektroskopieLukáč, František January 2011 (has links)
The correlation of vacancy concentration with microhardness of Fe-Al alloys was studied on samples quenched from 1000 řC and subsequently annealed at lower temperatures. Using X-ray diffraction the lattice parameter and crystal structure were determined for samples of Fe-Al alloys. By measurements of positron lifetime was revealed the high concentration of vacancies in quenched samples and subsequent annealing caused significant decrease in vacancy concentration while in samples with Al content above 39% also the decrease of microhardness was measured. Measurements of coincidence Doppler broadening of annihilation peak helped to distinguish the annihilations coming from positron trapped or delocalized annihilated by electrons of both atoms, Fe and Al. Comparison of measured results with theoretical quantum-mechanics calculations performed in this diploma thesis determined the most probable defect type as a vacancy on A-sublatice of B2 structure.
|
122 |
Evaluation of multiple and single emission peak light emitting diode light curing units effect on the degree of conversion and microhardness of resin-based pit and fissure sealantAlqahtani, Saleh Ali M. January 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Objective: The objective was to assess a multiple emission peak light-emitting-diode
(LED) light-curing unit (LCU) by measuring the polymerization efficiency through the
degree of conversion (DC) and Knoop microhardness (KHN) of a resin-based pit and
fissure sealant at various light curing times and two distances compared to a single
emission peak LED LCU.
Method: Sixty disks of resin-based pit and fissure sealant (Delton, DENTSPLY, York, PA)
samples (6x1mm) were fabricated (n=5/LCU/group). Prepared samples were polymerized
using 10, 20 and 40 second curing time at 2 or 4 mm curing distances. The irradiance and
radiant exposure received on the top/bottom surfaces of the samples were measured using
the Managing Accurate Resin Curing-Resin Calibrator (MARC-RC) system. The samples
were stored at 37°C for one hour. Then, the DC (n=3/surface) and KHN (n=5/surface)
measurements were collected on the top and bottom surfaces using Attenuated Total
Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and a microhardness
tester (Instron) utilizing 25-gm at 10 seconds dwell time, respectively. Multiple-way
ANOVA was performed followed by Tukey test (α=0.05).
Result: The irradiance from the multiple emission peak LED LCU was significantly higher
than the single emission peak LED LCU (1312.6 and 768.3 mW/cm2) respectively.
Moreover, the multiple emission peak LED LCU displayed significantly higher DC
(82.5%) and microhardness (26.2 KHN) compared to the single emission peak LED LCU
(75.5% DC and 21.2 KHN) when curing samples at 2 and 4 mm curing distances assessed
using 10, 20 and 40-second curing times. The 10 second cure at 4 mm showed significantly
lower DC and KHN values compared to the other groups.
Conclusion: The multiple emission peak LED LCU demonstrated significantly higher
irradiance, DC and KHN compared to the single emission peak LED LCU on a resin-based
pit and fissure sealant at 2 and 4 mm curing distances and 10, 20 and 40 second curing
times. Therefore, the multiple emission peak LED LCU performed higher than the single
emission peak LED LCU.
|
123 |
A Study of the Microstructural Evolution and Static Recrystallization of Magnesium Alloy AZ-31Kistler, Harold Michael 12 May 2012 (has links)
The present study focuses on the evolving microstructure of Mg alloy AZ31. The material is subjected to channel die compression at room temperature to simulate a reduction stage in the rolling process. Samples are annealed to provoke recovery, static recrystallization, and grain growth. Annealing is carried out at three temperatures for times ranging from 10s to 10,000s. The material’s response is exhibited through the use of data collection methods such as microhardness, optical microscopy, and electron backscatter diffraction (EBSD). Methodology behind experimentation and data collection techniques are documented in detail. Conclusions are made about the effects of the compression and annealing processes on the material’s microstructure. The Johnson-Mehl-Avrami-Kolmogorov (JMAK) model is introduced, and a simple recrystallization kinetics plot is attempted.
|
124 |
Simulation and Experimental Based Hardenability Evaluation of Chromium Alloyed Powder Metal SteelsKotasthane, Atharva January 2023 (has links)
Powder metallurgy is a branch of metal forming technology where metal powders are used to manufacture parts and components. It is a flexible and economical technique for manufacturing complicated shapes. This present work focuses on press and sinter technology and forms a part of Höganäs’s efforts of modelling hardenability through quenching. It aims to reduce the number of experimental trials for optimising heat treatment. Hardenability is a measure of how much martensite can be formed during heat treatment, thereby making steels hard, tough and impart strength. The presence of alloying elements like carbon, manganese, chromium, molybdenum, and nickel affects the hardenability of the steel and improves performance like fatigue strength and corrosion resistance. These elements influence the critical cooling rate necessary to form martensite during heat treatment. Component geometry also influences hardenability. Depending on the surface area available to cool, and volume of component, cooling rates may locally be different thereby resulting in an inhomogeneous structure. The work focuses particularly on two grades of powders manufactured by Höganäs AB - Astaloy® CrA and Astaloy® CrS which are evaluated for their hardenability. The aim of this work is to take cooling conditions observed in the actual furnace, use them to predict the amount of martensite present and the martensite start temperature and then compare it with experimental results thereby linking experiment to simulations. For the experimental part, dilatometry was used. Quenching data is obtained from the furnace along with heat capacity of the component and are used as input in Abaqus, which gives us the cooling rates for the component in the furnace. This data is then utilised as an input to dilatometry, where the samples are representative of sections of component. After dilatometry, vital information like martensite start temperature is recorded and metallography is performed, where phase fraction is obtained. Hardness measurements are also performed to verify the phases present. Simulation tools like JMatPro and Thermo-Calc are employed to obtain data for correlation. An extensive study on the difference between them are also studied and presented. The data from simulation and actual experiment is compared and, Ms evaluated from JMatPro and Thermo-Calc for CrA shows a deviation of 12°C. For CrS samples, a higher deviation is observed, with JMatPro showing deviation of 44°C and Thermo-Calc, 52°C in respect to the measured values. For CrA, we observe a fully martensitic structure for the higher carbon samples, including ones alloyed with Ni. For samples with lower carbon, metallographic investigation results in an unclear picture as to if the structure observed is bainite or martensite. CrS samples are mostly martensitic with some bainite present. CrS samples alloyed with Ni and Cu show the least amount of bainite present. The phase fractions predicted by JMatPro show good agreement with results from metallography. Data from microhardness confirms the presence of phases present. Samples with low carbon are softest but show a great improvement in hardness when alloyed. Overall, simulations and actual experimental values are seen to be in good agreement, thereby establishing a strong foundation for future work, where actual components can be evaluated. Quenching conditions observed in the furnace are validated through this work. / Pulvermetallurgi är en gren av metallformningsteknik där metallpulver används för att tillverka delar och komponenter. Det är en flexibel och ekonomisk teknik för att tillverka komplicerade former. Detta nuvarande arbete fokuserar på press- och sinterteknik och är en del av Höganäs arbete med att modellera härdbarhet genom härdning. Det syftar till att minska antalet experimentella försök för att optimera värmebehandlingen. Härdbarhet är ett mått på hur mycket martensit som kan bildas vid värmebehandling, vilket gör stålen hårda, sega och ger styrka. Närvaron av legeringselement som kol, mangan, krom, molybden och nickel påverkar stålets härdbarhet och förbättrar prestanda som utmattningshållfasthet och korrosionsbeständighet. Dessa element påverkar den kritiska kylningshastighet som krävs för att bilda martensit under värmebehandling. Komponentgeometrin påverkar också härdbarheten. Beroende på den yta som är tillgänglig för kylning och volymen av komponenten, kan kylningshastigheterna lokalt vara olika, vilket resulterar i en inhomogen struktur. Arbetet fokuserar särskilt på två kvaliteter av pulver tillverkade av Höganäs AB - Astaloy® CrA och Astaloy® CrS som utvärderas för sin härdbarhet. Syftet med detta arbete är att ta kylförhållanden som observerats i den faktiska ugnen, använda dem för att förutsäga mängden närvarande martensit och martensitens starttemperatur och sedan jämföra den med experimentella resultat och därigenom koppla experiment till simuleringar. För den experimentella delen användes dilatometry. Släckningsdata erhålls från ugnen tillsammans med värmekapaciteten hos komponenten och används som indata i Abaqus, vilket ger oss kylhastigheten för komponenten i ugnen. Dessa data används sedan som indata till dilatometry, där proverna är representativa för sektioner av komponenten. Efter dilatometri registreras viktig information som martensitstarttemperatur och metallografi utförs, där fasfraktion erhålls. Hårdhetsmätningar utförs också för att verifiera de närvarande faserna. Simuleringsverktyg som JMatPro och Thermo-Calc används för att få data för korrelation. En omfattande studie om skillnaden mellan dem studeras och presenteras också. Data från simulering och faktiska experiment jämförs och Ms utvärderade från JMatPro och Thermo-Calc för CrA visar en avvikelse på 12°C. För CrS-prover observeras en högre avvikelse, där JMatPro visar en avvikelse på 44°C och Thermo-Calc, 52°C i förhållande till de uppmätta värdena. För CrA observerar vi en helt martensitisk struktur för de högre kolproverna, inklusive de som legerats med Ni. För prover med lägre kolhalt resulterar metallografisk undersökning i en oklar bild av om den observerade strukturen är bainit eller martensit. CrS-prover är mestadels martensitiska med viss bainit närvarande. CrS-prover legerade med Ni och Cu visar den minsta mängden bainit som finns närvarande. Fasfraktionerna som förutspåtts av JMatPro visar god överensstämmelse med resultaten från metallografi. Data från mikrohårdhet bekräftar närvaron av faser. Prover med låg kolhalt är mjukast men visar en stor förbättring i hårdhet när de är legerade. Sammantaget bedöms simuleringar och faktiska experimentella värden stämma överens, vilket skapar en stark grund för framtida arbete, där faktiska komponenter kan utvärderas. Släckningsförhållanden som observerats i ugnen valideras genom detta arbete.
|
125 |
INFLUENCE OF PROCESSING VARIABLES ON MICROSTRUCTURE DEVELOPMENT AND HARDNESS OF BULK SAMPLES OF TWO NOVEL CERAMICS PREPARED BY PLASMA PRESSURE COMPACTIONGireesh, Guruprasad 18 May 2006 (has links)
No description available.
|
126 |
The Microstructure, Tensile Deformation, Cyclic Fatigue and Final Fracture Behavior of Alloy Steel 4140 for use in CNG (Compressed Natural Gas) and Hydrogen Pressure VesselsBalogun, Nurudeen 13 December 2010 (has links)
No description available.
|
127 |
Effect of Heat Treatment and Build Direction on the Mechanical Properties of Selective Laser Melted 15-5 Precipitation Hardened Stainless Steel SamplesNegron Castro, Juan Pablo 11 July 2022 (has links)
No description available.
|
128 |
Effect of Build Geometry and Build Parameters on Microstructure, Fatigue Life, and Tensile Properties of Additively Manufactured Alloy 718Dunn, Anna 01 September 2022 (has links)
No description available.
|
129 |
SPUTTER DEPOSITED CR/CRN NANOCRYSTALLINE THIN FILMSSeok, Jin Woo 11 October 2001 (has links)
No description available.
|
130 |
Effect of nano-carburization of mild steel on its surface hardnessHassan, Ajoke Sherifat 14 April 2016 (has links)
There has been progress in the surface modification of low carbon steel in order to enhance its surface hardness. This study contributes to this by investigating the introduction of carbon nanotubes and amorphous carbon in the carburization of mild steel.
In order to achieve the goal, carbon nanotubes were synthesized in a horizontal tubular reactor placed in a furnace also called the chemical vapor deposition process at a temperature of 700oC. Catalyst was produced from Iron nitrate Fe(NO3)3.9H2O and Cobalt nitrate Co(NO3)2.6H2O on CaCO3 support while acetylene C2H2 was used as the carbon source and nitrogen N2 was used as contaminant remover. The as-synthesized carbon nanotubes were purified using nitric acid HNO3 and characterized using scanning electron microscopy (SEM), thermo-gravimetric analysis (TGA) and fourier transform infrared spectroscopy (FTIR). It was found that as-synthesized carbon nanotubes had varying lengths with diameters between 42-52 nm from the SEM and the TGA showed the as-synthesized CNTs with a mass loss of 78% while purified CNTs had 85% with no damage done to the structures after using the one step acid treatment.
The as-synthesized and purified carbon nanotubes were used in carburizing low carbon steel (AISI 1018) at two austenitic temperatures of 750oC and 800oC and varying periods of 10-50 minutes while amorphous carbon obtained by pulverizing coal was also used as comparison. The mild steel samples were carburized with carbon nanotubes and amorphous carbon in a laboratory muffle furnace with a defined number of boost and diffusion steps. The carburizing atmosphere consisted of heating up to the varying temperatures at a speed of 10oC/minute, heating under this condition at varying periods, performing a defined number of boost and diffusion processes at the varying temperatures and cooling to room temperatures under the same condition. The carburized surfaces were observed with the Olympus SC50 optical microscope and the hardness distribution of the carburized layer was inspected with a Vickers FM 700 micro-hardness tester.
The as-synthesized and purified CNT samples showed higher hardness on the surface of the mild steel than the amorphous carbon. In the same vein, the change in the microstructures of vi
the steel samples indicated that good and improved surface hardness was obtained in this work with the reinforcements but with purified CNT having the highest peak surface hardness value of 191.64 ± 4.16 GPa at 800oC, as-synthesized CNT with 177.88 ± 2.35 GPa and amorphous carbon with 160.702 ± 5.79 GPa which are higher compared to the values obtained at 750oC and that of the original substrate which had a surface hardness of 145.188 ± 2.66 GPa. The percentage hardness obtained for the reinforcement with the amorphous carbon, the CNT and the pCNT showed an increase of 5.47%, 10.04% and 15.77% respectively at 750oC when compared to that of the normal substrate carburized without reinforcements. Furthermore, at 800oC, the reinforcement with the amorphous carbon, the CNT and the pCNT show a percentage hardness increase of 7.04%, 14.68% and 22.05% when compared to that of the normal substrate carburized without reinforcements. Comparing the reinforcement potential of the amorphous carbon, the CNT and the pCNT at 750oC, the percentage hardness reveal that using pCNT displayed an increase of 10.89% over that of amorphous carbon and of 6.37% over that of CNT. In addition, the use of CNT as reinforcement at 750oC displayed a percentage hardness increase of 4.83% over that of the amorphous carbon carburized at the same temperature / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
|
Page generated in 0.056 seconds