• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 45
  • 29
  • 25
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 298
  • 172
  • 155
  • 59
  • 57
  • 54
  • 47
  • 42
  • 37
  • 35
  • 34
  • 30
  • 28
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structure and reactions in novel organic monolayers

Skabardonis, John Gregory January 1990 (has links)
No description available.
12

Self-Assembled Monolayers As Models For Silica

Cavadas, Francisco T. 18 April 2002 (has links)
The reaction of hydroquinone and 1,12-dibromododecane affords 4-(12-bromo-dodecyloxy)phenol (4, 7% yield). The alkyl bromide (4) was converted to the corresponding thiol with thiourea to afford 4-(12-mercaptododecyloxy)phenol (1) in 52% yield. The reaction of t-butyllithium with 4-bromoanisole followed by reaction with 1-12-dibromododecane affords a mixture of 4-bromoanisole, 1,12-dibromododecane ,and 4-(12-bromododecyl)-anisole (6). Silica gel chromatography resulted in an inseperable mixture of 4-bromoanisole and (6). Reaction of the mixture with BBr3 afforded 4-(12-bromododecyl)phenol (7) in 34% yield. The alkyl bromide (7) was converted to the corresponding thiol with thiourea to afford 4-(12-mercaptododecyl)phenol (2) in 9% yield. Reduction of 16-mercaptohexadecanoic acid with BH3â hTHF afforded 16-mercaptohexadecanol (3) in 53% yield. All new compounds were characterized by ¹H NMR, ¹³C NMR, transmission IR, HRMS, and, where possible, elemental microanalysis. Self-assembled monolayers (SAMs) on gold were prepared using thiols 1, 2, and 3. SAMs were characterized using reflectance-absorbance infrared spectroscopy (RAIRS). Diagnostic vibrational modes were assigned by comparing RAIRS spectra to normal mode frequencies and intensities calculated using DFT methods at the 6-31G* level using commercial software. Water droplet goiniometry found contact angles of 52o, 53o, and 64o for SAMs prepared from 1, 2, and 3, respectively. SAMs of 1 and 2 were found to be hydrophilic. When SAMs prepared from 1, 2, and 3 were silylated with phenyldimethylchlorosilane, the resulting contact angles were 78o, 74o, and 75o respectively. A significant increase in contact angles for silylated SAMs of 1 and 2 indicated facile silanization of the surface hydroxides. RAIRS spectra were also obtained for the functionalized SAMs. Silylated SAMs prepared from 1, 2, and 3 are currently under investigation as models for silica-immobilized metallocene olefin polymerization catalysts. / Master of Science
13

A versatile and modular approach to modify silicon surfaces for electrochemical applications

Ciampi, Simone , Chemistry, Faculty of Science, UNSW January 2009 (has links)
The thesis presents the research results obtained while studying novel chemical strategies for preparing Si(100)-based electrochemical platforms suitable for aqueous environments. A primary research aim was the preparation of well-passivated Si(100) surfaces amenable to further chemical derivatization. The preparation and functionalization of alkyne-terminated alkyl monolayers on Si(100) surfaces using the Huisgen 1,3-dipolar ???click??? cycloaddition of azides with surface-bound acetylenes is reported and shown to be a versatile, experimentally simple, chemically unambiguous modular approach to modified silicon surfaces. Covalently immobilized, structurally well-defined acetylenyl organic monolayers are prepared from a commercially available ??,??-diyne (1,8-nonadiyne) species using a one-step thermal hydrosilylation procedure. Subsequent derivatization of the alkyne-terminated monolayers in aqueous environments with representative azide species affords disubstituted surface-bound [1,2,3]-triazole species. Neither activation procedures nor protection/deprotection schemes are required, as is the case with more established grafting approaches for silicon surfaces. The described surface modification scheme has been used in preparing modified Si(100) electrode surfaces, where modular components such as ferrocene derivatives or electrochemically ???switchable??? linker molecules are introduced onto the passivated silicon surface. An implementation study to prepare modified light-addressable ???switchable??? Si(100) electrodes is also reported. Negligible oxidation of the substrate was generally observed after exposure to aqueous systems for extended periods (tens of hours), and the electroactive monolayers showed a robust and reversible behaviour. The proposed concept of modular components and high-yielding coupling procedures has been shown on Si(100) surfaces and also extended to illustrate the functionalization of porous silicon rugate filters.
14

Spectroscopic and electrochemical investigation of phenyl, phenoxy, and hydroxyphenyl-terminated alkanethiol monolayers

Cavadas, Francisco Troitino 12 September 2003 (has links)
4-(12-mercaptododecyloxy)phenol (1), 3-(12-mercaptododecyloxy)phenol (2), 4-(12-mercaptododecyl)phenol (3), 4-(12-mercapto-dodecyl)phenol (4), 12-phenyldodecyl-mercaptan (5), 12-phenylundecyoxymercaptan (6), 4-(6-mercapto-hexyl)phenol (7), and 4-(12-mercaptododecyloxy)phenol (8) were synthesized. The thiol products were characterized by NMR, HRMS, and elemental analysis. Self-assembled monolayers (SAMs) on gold substrates were prepared from thiols 1-8, and the resulting monolayer surfaces were analyzed using Reflectance Absorbance Infrared Spectroscopy (RAIRS), contact angle goniometry, ellipsometry, reductive desorption cyclic voltametry, and impedance spectroscopy. Several aromatic C-C vibrational frequencies in the RAIRS spectra, for SAMs of 1-8, reveal a dependence of peak intensity on substitution regiochemistry of the aromatic ring. This result suggests that the orientation of the aromatic ring changes with substitution. Peak intensity, and peak widths of alkyl C-H vibrational features in the RAIRS spectra also reveal a dependence of the environment of the alkyl chain on structure of thiols 1-8. Meta-substitution seems to significantly alter the projection of the terminal -OH group relative to para-substitution. Contact angles were obtained for each SAM surface using water, glycerol, and ethylene glycol. From the contact angle data, Zisman and Fowkes analyses were performed in order to determine surface free energy values and also to determine the dispersive contribution to the surface energy. The energy values obtained from the Zisman plots as well as the dispersive contributions obtained from the Fowkes plots suggest a dependence of surface energy on substitution regiochemistry of the aromatic ring. The results are consistent with the interpretation of the RAIRS spectra as they relate to the effect substitution regiochemistry has on SAM structure and interfacial properties. The results of the reductive desorption measurements performed on each monolayer surface, indicate that changes in substitution regiochemistry do not seem to affect the surface coverage of SAMs 1-8. Desorption potentials however, are affected by the structure of the thiols composing the SAM, which suggests that the lateral stability resulting from interactions of the terminal groups and alkyl chains, is different for each monolayer surface. Specifically SAMs of 12-phenyldodecylmercaptan (5) and SAMs of 4-(12-mercaptododecyloxy)phenol (1) seem to be more stable due to interactions of the terminal aromatic ring in SAMs of (5) and due to an increase in van der Waals interactions in SAMs of (1). Film thicknesses, as determined by ellipsometry, also suggest that meta-substitution of the aromatic ring results in lower thicknesses for SAMs of (4), which is consistent with the interpretation of the structural changes resulting from meta-substitution, suggested by the interpretation of the RAIRS spectrum of SAMs of (4). Thickness measurements also indicate that most of the functionalized SAMs (1-4, 7, 8) react with OTS, which suggests the terminal -OH group is not shielded at the interface and is available for reaction. Following reaction with OTS the RAIRS spectra of the reacted surfaces reveal structural changes to the underlying SAM. Impedance spectroscopic measurements performed on SAMs of 1-8 reveal what seems to be a correlation between the orientation of the aromatic ring and the resistance properties of the SAM. It appears meta-substitution of the ring lowers the monolayers ability to resist electron transfer. These data suggest that meta-substitution of the aromatic ring has a significant impact upon the structure of the resulting monolayer relative to monolayers composed of para-substituted molecules. The data also suggests that there is a correlation between molecular structure and interfacial properties particularly as it relates to surface energy and reactivity. Small atomic changes in the molecules composing the SAM result in measurable differences in macroscopic properties of the interface. It is important to recognize the need for understanding structure-property relationships in self-assembled monolayers particularly if logical design of surfaces is to be achieved and applied towards solving problems associated with corrosion and adhesion of metal surfaces. / Ph. D.
15

Langmuir-Blodgett films for non-linear optical applications

Stone, Peter Jeffrey William January 1994 (has links)
No description available.
16

Electrochemical in situ investigation of thiolate DNA monolayers on gold with fluorescence imaging

Murphy, Jeffrey N. 11 1900 (has links)
DNA-modified surfaces have been widely studied for microarray and biosensor applications, in particular sequence-specific detection of DNA, for which electrochemical and optical signs can be produced. Variations in the organization and surface density of adsorbed DNA are known to affect the sensitivity and reliability of assays performed using such surfaces, however most measurements of such surfaces to date have little to no spatial resolution, limiting the information that can be gathered regarding the heterogeneity of the organization of adsorbed DNA molecules. We have applied in situ epi-fluorescence microscopic imaging in conjunction with electrochemical measurements to fluorescently labelled thiolate DNA, adsorbed on polycrystalline gold electrodes with a mercaptohexanol (MCH) passive layer. Spatially resolved information on the organization of adsorbed DNA on the surface is gathered within an area measuring 520by 730micrometres with a 0.96 micrometre resolution. The technique has enabled us to investigate "hotspots" (regions of anomalously bright fluorescence) and regional variation in fluorescence; since molecular fluorescence is quenched as a function of distance from the metal substrate, potential modulation with consequent DNA reorientation or layer specificity of the adsorption. Furthermore, an alternative means to the conventional preparation of thiolate-DNA / MCH monolayers has been developed. In this new method, a gold substrate passivated with MCH is subsequently immersed in an aqueous solution of 5'hexylthiol modified DNA. Through a ligand exchange process, DNA is immobilized forming a mixed MCH / DNA monolayer. Samples prepared via the new method display fewer hotspots and improved fluorescence switching of the DNA during electromodulation for samples made with single stranded (ss) DNA and with double stranded (ds) DNA. Measurement of the DNA surface concentration using ruthenium (III) hexaammine chloride with cyclic voltammetry for self assembled monolayers (SAMs) prepared via the new method are on the order of 1% of the maximum grafting density obtainable for both ssDNA and dsDNA by conventional methods.
17

Study of Molecular Self-Assembled Monolayers of Ru(II)-Terpyridyloctanethiolate Complex on Au Electrode and Au Clusters

Huang, Chien-lin 17 July 2006 (has links)
The cyclic voltammogram of complex 6 shows one successive reversible one-electron redox wave corresponding to the oxidation of the Ruthenium moiety and peak-to-peak separations are smaller than 59 mV(ideal value of one electron transfer with diffusing controlling). In addition, the peak currents are linear to scan rate, i.e., i £\ V. This observation is corresponding to the electrochemical property of SAM, and we would like to suggest that the electron transfer process in the electrochemical measurements is direct controlling. Furthermore, we synthesized a nano-material by using of redox stable Ru(II)-Terpyridyloctanethiol attached to gold cluster (complex 7). The clusters are stable in air, soluble in nonpolar organic solvents and the characters could be examining by traditional chemical instruments such as NMR, UV/Vis, TEM. Finally, complex 7 seif-assembled on gold electrode (complex 8). This observation is corresponding to the electrochemical property of SAM, and we would like to suggest that the electron transfer process in the electrochemical measurements is direct controlling. we would like to suggest that the complex 5 has bi-functionalized property.
18

Electrochemical in situ investigation of thiolate DNA monolayers on gold with fluorescence imaging

Murphy, Jeffrey N. 11 1900 (has links)
DNA-modified surfaces have been widely studied for microarray and biosensor applications, in particular sequence-specific detection of DNA, for which electrochemical and optical signs can be produced. Variations in the organization and surface density of adsorbed DNA are known to affect the sensitivity and reliability of assays performed using such surfaces, however most measurements of such surfaces to date have little to no spatial resolution, limiting the information that can be gathered regarding the heterogeneity of the organization of adsorbed DNA molecules. We have applied in situ epi-fluorescence microscopic imaging in conjunction with electrochemical measurements to fluorescently labelled thiolate DNA, adsorbed on polycrystalline gold electrodes with a mercaptohexanol (MCH) passive layer. Spatially resolved information on the organization of adsorbed DNA on the surface is gathered within an area measuring 520by 730micrometres with a 0.96 micrometre resolution. The technique has enabled us to investigate "hotspots" (regions of anomalously bright fluorescence) and regional variation in fluorescence; since molecular fluorescence is quenched as a function of distance from the metal substrate, potential modulation with consequent DNA reorientation or layer specificity of the adsorption. Furthermore, an alternative means to the conventional preparation of thiolate-DNA / MCH monolayers has been developed. In this new method, a gold substrate passivated with MCH is subsequently immersed in an aqueous solution of 5'hexylthiol modified DNA. Through a ligand exchange process, DNA is immobilized forming a mixed MCH / DNA monolayer. Samples prepared via the new method display fewer hotspots and improved fluorescence switching of the DNA during electromodulation for samples made with single stranded (ss) DNA and with double stranded (ds) DNA. Measurement of the DNA surface concentration using ruthenium (III) hexaammine chloride with cyclic voltammetry for self assembled monolayers (SAMs) prepared via the new method are on the order of 1% of the maximum grafting density obtainable for both ssDNA and dsDNA by conventional methods.
19

Physical properties of grafted polymer monolayers studied by scanning force microscopy morphology, friction, elasticity /

Koutsos, Vasileios. January 1997 (has links)
Proefschrift Rijksuniversiteit Groningen. / Datum laatste controle: 23-10-1997. Lit.opg. - Met een samenvatting in het Nederlands.
20

Electrochemical in situ investigation of thiolate DNA monolayers on gold with fluorescence imaging

Murphy, Jeffrey N. 11 1900 (has links)
DNA-modified surfaces have been widely studied for microarray and biosensor applications, in particular sequence-specific detection of DNA, for which electrochemical and optical signs can be produced. Variations in the organization and surface density of adsorbed DNA are known to affect the sensitivity and reliability of assays performed using such surfaces, however most measurements of such surfaces to date have little to no spatial resolution, limiting the information that can be gathered regarding the heterogeneity of the organization of adsorbed DNA molecules. We have applied in situ epi-fluorescence microscopic imaging in conjunction with electrochemical measurements to fluorescently labelled thiolate DNA, adsorbed on polycrystalline gold electrodes with a mercaptohexanol (MCH) passive layer. Spatially resolved information on the organization of adsorbed DNA on the surface is gathered within an area measuring 520by 730micrometres with a 0.96 micrometre resolution. The technique has enabled us to investigate "hotspots" (regions of anomalously bright fluorescence) and regional variation in fluorescence; since molecular fluorescence is quenched as a function of distance from the metal substrate, potential modulation with consequent DNA reorientation or layer specificity of the adsorption. Furthermore, an alternative means to the conventional preparation of thiolate-DNA / MCH monolayers has been developed. In this new method, a gold substrate passivated with MCH is subsequently immersed in an aqueous solution of 5'hexylthiol modified DNA. Through a ligand exchange process, DNA is immobilized forming a mixed MCH / DNA monolayer. Samples prepared via the new method display fewer hotspots and improved fluorescence switching of the DNA during electromodulation for samples made with single stranded (ss) DNA and with double stranded (ds) DNA. Measurement of the DNA surface concentration using ruthenium (III) hexaammine chloride with cyclic voltammetry for self assembled monolayers (SAMs) prepared via the new method are on the order of 1% of the maximum grafting density obtainable for both ssDNA and dsDNA by conventional methods. / Science, Faculty of / Chemistry, Department of / Graduate

Page generated in 0.0524 seconds