• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 27
  • 6
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 92
  • 92
  • 46
  • 29
  • 28
  • 28
  • 26
  • 25
  • 24
  • 19
  • 19
  • 15
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Climate and agrometeorology forecasting using soft computing techniques. /

Esteves, João Trevizoli January 2018 (has links)
Orientador: Glauco de Souza Rolim / Resumo: Precipitação, em pequenas escalas de tempo, é um fenômeno associado a altos níveis de incerteza e variabilidade. Dada a sua natureza, técnicas tradicionais de previsão são dispendiosas e exigentes em termos computacionais. Este trabalho apresenta um modelo para prever a ocorrência de chuvas em curtos intervalos de tempo por Redes Neurais Artificiais (RNAs) em períodos acumulados de 3 a 7 dias para cada estação climática, mitigando a necessidade de predizer o seu volume. Com essa premissa pretende-se reduzir a variância, aumentar a tendência dos dados diminuindo a responsabilidade do algoritmo que atua como um filtro para modelos quantitativos, removendo ocorrências subsequentes de valores de zero(ausência) de precipitação, o que influencia e reduz seu desempenho. O modelo foi desenvolvido com séries temporais de 10 regiões agricolamente relevantes no Brasil, esses locais são os que apresentam as séries temporais mais longas disponíveis e são mais deficientes em previsões climáticas precisas, com 60 anos de temperatura média diária do ar e precipitação acumulada. foram utilizados para estimar a evapotranspiração potencial e o balanço hídrico; estas foram as variáveis ​​utilizadas como entrada para as RNAs. A precisão média para todos os períodos acumulados foi de 78% no verão, 71% no inverno 62% na primavera e 56% no outono, foi identificado que o efeito da continentalidade, o efeito da altitude e o volume da precipitação normal , tem um impacto direto na precisão das RNAs. Os... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Precipitation, in short periods of time, is a phenomenon associated with high levels of uncertainty and variability. Given its nature, traditional forecasting techniques are expensive and computationally demanding. This paper presents a model to forecast the occurrence of rainfall in short ranges of time by Artificial Neural Networks(ANNs) in accumulated periods from 3 to 7 days for each climatic season, mitigating the necessity of predicting its amount. With this premise it is intended to reduce the variance, rise the bias of data and lower the responsibility of the model acting as a filter for quantitative models by removing subsequent occurrences of zeros values of rainfall which leads to bias the and reduces its performance. The model were developed with time series from 10 agriculturally relevant regions in Brazil, these places are the ones with the longest available weather time series and and more deficient in accurate climate predictions, it was available 60 years of daily mean air temperature and accumulated precipitation which were used to estimate the potential evapotranspiration and water balance; these were the variables used as inputs for the ANNs models. The mean accuracy of the model for all the accumulated periods were 78% on summer, 71% on winter 62% on spring and 56% on autumn, it was identified that the effect of continentality, the effect of altitude and the volume of normal precipitation, have a direct impact on the accuracy of the ANNs. The models have ... (Complete abstract click electronic access below) / Mestre
2

An?lise de desempenho da rede neural artificial do tipo multilayer perceptron na era multicore

Souza, Francisco Ary Alves de 07 August 2012 (has links)
Made available in DSpace on 2014-12-17T14:56:07Z (GMT). No. of bitstreams: 1 FranciscoAAS_DISSERT.pdf: 1526658 bytes, checksum: 7ba5b80f03a10eaf25a4f9e6a4c91372 (MD5) Previous issue date: 2012-08-07 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections / As redes neurais artificiais geralmente s?o aplicadas ? solu??o de problemas comple- xos. Em problemas com maior complexidade, ao aumentar o n?mero de camadas e de neur?nios, ? poss?vel conseguir uma maior efici?ncia funcional, por?m, isto acarreta em um maior esfor?o computacional. O tempo de resposta ? um fator importante na decis?o de us?-las em determinados sistemas. Muitos defendem que o maior custo computacional est? na fase de treinamento. Por?m, esta fase ? realizada apenas uma ?nica vez. J? trei- nada, ? necess?rio usar os recursos computacionais existentes de forma eficiente. Diante da era multicore esse problema se resume ? utiliza??o eficiente de todos os n?cleos de processamento dispon?veis. No entanto, ? necess?rio considerar a sobrecarga existente na computa??o paralela. Neste sentido, este trabalho prop?e uma estrutura modular que ? mais adequada para as implementa??es paralelas. Prop?e-se paralelizar o processo feed- forward (passo para frente) de uma RNA do tipo MLP, implementada com o OpenMP em uma arquitetura computacional de mem?ria compartilhada. A investiga??o dar-se-? com a realiza??o de testes e an?lises dos tempos de execu??o. A acelera??o, a efici?ncia e a es- calabilidade s?o analisados. Na proposta apresentada ? poss?vel perceber que, ao diminuir o n?mero de conex?es entre os neur?nios remotos, o tempo de resposta da rede diminui e por consequ?ncia diminui tamb?m o tempo total de execu??o. O tempo necess?rio para comunica??o e sincronismo est? diretamente ligado ao n?mero de neur?nios remotos da rede, sendo ent?o, necess?rio observar sua melhor distribui??o
3

Predicting HIV Status Using Neural Networks and Demographic Factors

Tim, Taryn Nicole Ho 15 February 2007 (has links)
Student Number : 0006036T - MSc(Eng) project report - School of Electrical and Information Engineering - Faculty of Engineering and the Built Environment / Demographic and medical history information obtained from annual South African antenatal surveys is used to estimate the risk of acquiring HIV. The estimation system consists of a classifier: a neural network trained to perform binary classification, using supervised learning with the survey data. The survey information contains discrete variables such as age, gravidity and parity, as well as the quantitative variables race and location, making up the input to the neural network. HIV status is the output. A multilayer perceptron with a logistic function is trained with a cross entropy error function, providing a probabilistic interpretation of the output. Predictive and classification performance is measured, and the sensitivity and specificity are illustrated on the Receiver Operating Characteristic. An auto-associative neural network is trained on complete datasets, and when presented with partial data, global optimisation methods are used to approximate the missing entries. The effect of the imputed data on the network prediction is investigated.
4

Drought Indices in Panama Canal / Drought Indices in Panama Canal

Gutiérrez Hernández, Julián Eli January 2015 (has links)
Panama has a warm, wet, tropical climate. Unlike countries that are farther from the equator, Panama does not experience seasons marked by changes in temperature. Instead, Panama's seasons are divided into Wet and Dry. The Dry Season generally begins around mid-December, but this may vary by as much 3 to 4 weeks. Around this time, strong northeasterly winds known as "trade winds" begin to blow and little or no rain may fall for many weeks in a row. Daytime air temperatures increase slightly to around 30-31 Celsius (86-88 Fahrenheit), but nighttime temperatures remain around 22-23 Celsius (72-73 Fahrenheit). Relative humidity drops throughout the season, reaching average values as low as 70 percent. The Wet Season usually begins around May 1, but again this may vary by 1 or 2 weeks. May is often one of the wettest months, especially in the Panama Canal area, so the transition from the very dry conditions at the end of the Dry Season to the beginning of Wet Season can be very dramatic. With the arrival of the rain, temperatures cool down a little during the day and the trade winds disappear. Relative humidity rises quickly and may hover around 90 to 100% throughout the Wet Season. Drought forecasts can be an effective tool for mitigating some of the more adverse consequences of drought. The presented thesis compares forecast of drought indices based on seven different models of artificial neural networks model. The analyzed drought indices are SPI and SPEI-ANN Drought forecast, and was derived for the period of 1985-2014 on Panama Canal basin; I've selected seven of sixty-one Hydro-meteorological networks, existing in the Panama Canal basin. The rainfall is 1784 mm per year. The meteorological data were obtained from the PANAMA CANAL AUTHORITY, Section of Water Resources, and Panama Canal Authority, Panama. The performance of all the models was compared using ME, MAE, RMSE, NS, and PI. The results of drought indices forecast, explained by the values of seven model performance indices, show, that in Panama Canal has problem with the drought. Even though The Panama is generally seen as a wet country, droughts can cause severe problems. Significant drought conditions are observed in the index based on precipitation and potential evaporation found in this thesis; The Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), were used to quantify drought in the Panama Canal basin, Panama Canal, at multiple time scales within the period 1985-2014. The results indicate that drought indices based on different variables show the same major drought events. Drought indices based on precipitation and potential evaporation are more variable in time while drought indices based on discharge. Spatial distribution of meteorological drought is uniform over Panama Canal.
5

Speech Recognition System for Noisy Environment

Li, Hongzhe January 2015 (has links)
With the development of big data computing, the speech recognition has been popular for serving human’s life. However, when place the speech recognition system into noisy environments, the background noises greatly degrades the speech recognition system accuracy as it adds in unuseful information into the desired speech. Thus for a speech recognition system, obtaining a good performance under noises has become a vital issue. To tackle the noise effect problem of automatic speech recognition (ASR), a method to reduce the noise effect is essential. Recently, multiple of methods have been developed to enhance the speech signal, they usually follow the principle of suppressing the noise in a noisy speech signal. This thesis simulated the popular techniques for speech recogniton and speech enhancement, which are the multilayer perceptron and the spectral subtraction. The aim of this work is to use MATLAB to build an automatic speech recognition system that can be used in noisy environment. MATLAB simulations are used to verify the success of recognition with clean speech and show the system performance improvements after applying speech enhancement method in seven kinds of noisy environments. The result is presented by using comparative histograms between noisy signals and corresponding denoised signals. It shows that, using denoised signal will obtain a higher recognition rate, thus we can say the system performance is improved in noisy environments.
6

Utilização da tecnologia bluetooth associada a redes neurais artificiais (PMC) para monitoramento e rastreamento de suínos / Using Bluetooth technology associated with Artificial Neural Networks (MLP) for monitoring and tracking pigs

Santos, Diego Santiago dos 07 March 2014 (has links)
O presente trabalho teve como objetivo apresentar uma metodologia que permita encontrar o posicionamento e rastrear as diferentes localizações de um suíno em uma baia, utilizando o valor do Receiver Signal Strenght Indicator (RSSI), entre o dispositivo móvel (suíno) e três dispositivos fixos, e uma Rede Neural Artificial do tipo Perceptron Multicamadas (PMC), responsável por interpretar os sinais RSSI e transformá-los em valores conhecidos, como em um plano cartesiano, com coordenadas no eixo X e eixo Y. A região de teste foi dividida em 289 pontos, sendo 286 utilizados para coleta de dados e para o treinamento da rede PMC. Para cada ponto, foram armazenados a sua posição dentro da baia e o valor RSSI entre o dispositivo móvel e os três dispositivos fixos. O processo foi repetido para 8 pontos escolhidos aleatoriamente dentro do espaço de teste e inseridos como entradas na rede PMC. Após treinamentos e operações realizadas com diversas arquiteturas foi possível concluir que àquela dotada de 10 neurônios na camada intermediária consistiu na melhor alternativa, cujos resultados de monitoramento e rastreamento das posições do dispositivo móvel foram encontradas com valores aceitáveis de exatidão. / This paper aims to present a methodology to find the positioning and tracking of the different locations of a pig in a stall, using the value of the Receiver Signal Strength Indicator (RSSI), between the mobile device (pig) and three devices fixed, and an Artificial Neural Network Multilayer Perceptron (MLP), responsible for interpreting the RSSI signals and turning them into known values, such as on a Cartesian plane, with coordinates on X axis and Y axis. The test region was divided into 289 points, with 286 points used for data collection and training of PMC network, and for each point, it was stored its position inside the stall and its RSSI value between the mobile devices and the three fixed. The process was repeated for 8 points chosen randomly within the space of test and entered as inputs into the PMC network. After training and operations with various architectures it was concluded that the architecture with 10 neurons in the hidden layer was the best alternative, whose the results of monitoring and tracking the positions of mobile device were found with acceptable accuracy.
7

Utilização da tecnologia bluetooth associada a redes neurais artificiais (PMC) para monitoramento e rastreamento de suínos / Using Bluetooth technology associated with Artificial Neural Networks (MLP) for monitoring and tracking pigs

Diego Santiago dos Santos 07 March 2014 (has links)
O presente trabalho teve como objetivo apresentar uma metodologia que permita encontrar o posicionamento e rastrear as diferentes localizações de um suíno em uma baia, utilizando o valor do Receiver Signal Strenght Indicator (RSSI), entre o dispositivo móvel (suíno) e três dispositivos fixos, e uma Rede Neural Artificial do tipo Perceptron Multicamadas (PMC), responsável por interpretar os sinais RSSI e transformá-los em valores conhecidos, como em um plano cartesiano, com coordenadas no eixo X e eixo Y. A região de teste foi dividida em 289 pontos, sendo 286 utilizados para coleta de dados e para o treinamento da rede PMC. Para cada ponto, foram armazenados a sua posição dentro da baia e o valor RSSI entre o dispositivo móvel e os três dispositivos fixos. O processo foi repetido para 8 pontos escolhidos aleatoriamente dentro do espaço de teste e inseridos como entradas na rede PMC. Após treinamentos e operações realizadas com diversas arquiteturas foi possível concluir que àquela dotada de 10 neurônios na camada intermediária consistiu na melhor alternativa, cujos resultados de monitoramento e rastreamento das posições do dispositivo móvel foram encontradas com valores aceitáveis de exatidão. / This paper aims to present a methodology to find the positioning and tracking of the different locations of a pig in a stall, using the value of the Receiver Signal Strength Indicator (RSSI), between the mobile device (pig) and three devices fixed, and an Artificial Neural Network Multilayer Perceptron (MLP), responsible for interpreting the RSSI signals and turning them into known values, such as on a Cartesian plane, with coordinates on X axis and Y axis. The test region was divided into 289 points, with 286 points used for data collection and training of PMC network, and for each point, it was stored its position inside the stall and its RSSI value between the mobile devices and the three fixed. The process was repeated for 8 points chosen randomly within the space of test and entered as inputs into the PMC network. After training and operations with various architectures it was concluded that the architecture with 10 neurons in the hidden layer was the best alternative, whose the results of monitoring and tracking the positions of mobile device were found with acceptable accuracy.
8

Segmentação automática de Expressões Faciais Gramaticais com Multilayer Perceptrons e Misturas de Especialistas / Automatic Segmentation of Grammatical Facial Expressions with Multilayer Perceptrons and Mixtures of Experts

Cardoso, Maria Eduarda de Araújo 02 October 2018 (has links)
O reconhecimento de expressões faciais é uma área de interesse da ciência da computação e tem sido um atrativo para pesquisadores de diferentes áreas, pois tem potencial para promover o desenvolvimento de diferentes tipos de aplicações. Reconhecer automaticamente essas expressões tem se tornado um objetivo, principalmente na área de análise do comportamento humano. Especialmente para estudo das línguas de sinais, a análise das expressões faciais é importante para a interpretação do discurso, pois é o elemento que permite expressar informação prosódica, suporta o desenvolvimento da estrutura gramatical e semântica da língua, e ajuda na formação de sinais com outros elementos básicos da língua. Nesse contexto, as expressões faciais são chamadas de expressões faciais gramaticais e colaboram na composição no sentido semântico das sentenças. Entre as linhas de estudo que exploram essa temática, está aquela que pretende implementar a análise automática da língua de sinais. Para aplicações com objetivo de interpretar línguas de sinais de forma automatizada, é preciso que tais expressões sejam identificadas no curso de uma sinalização, e essa tarefa dá-se é definida como segmentação de expressões faciais gramaticais. Para essa área, faz-se útil o desenvolvimento de uma arquitetura capaz de realizar a identificação de tais expressões em uma sentença, segmentando-a de acordo com cada tipo diferente de expressão usada em sua construção. Dada a necessidade do desenvolvimento dessa arquitetura, esta pesquisa apresenta: uma análise dos estudos na área para levantar o estado da arte; a implementação de algoritmos de reconhecimento de padrões usando Multilayer Perceptron e misturas de especialistas para a resolução do problema de reconhecimento da expressão facial; a comparação desses algoritmos reconhecedores das expressões faciais gramaticais usadas na concepção de sentenças na Língua Brasileira de Sinais (Libras). A implementação e teste dos algoritmos mostraram que a segmentação automática de expressões faciais gramaticais é viável em contextos dependentes do usuários. Para contextos independentes de usuários, o problema de segmentação de expressões faciais representa um desafio que requer, principalmente, a organização de um ambiente de aprendizado estruturado sobre um conjunto de dados com volume e diversidade maior do que os atualmente disponíveis / The recognition of facial expressions is an area of interest in computer science and has been an attraction for researchers in different fields since it has potential for development of different types of applications. Automatically recognizing these expressions has become a goal primarily in the area of human behavior analysis. Especially for the study of sign languages, the analysis of facial expressions represents an important factor for the interpretation of discourse, since it is the element that allows expressing prosodic information, supports the development of the grammatical and semantic structure of the language, and eliminates ambiguities between similar signs. In this context, facial expressions are called grammatical facial expressions. These expressions collaborate in the semantic composition of the sentences. Among the lines of study that explore this theme is the one that intends to implement the automatic analysis of sign language. For applications aiming to interpret signal languages in an automated way, it is necessary that such expressions be identified in the course of a signaling, and that task is called \"segmentation of grammatical facial expressions\'\'. For this area, it is useful to develop an architecture capable of performing the identification of such expressions in a sentence, segmenting it according to each different type of expression used in its construction. Given the need to develop this architecture, this research presents: a review of studies already carried out in the area; the implementation of pattern recognition algorithms using Multilayer Perceptron and mixtures of experts to solve the facial expression recognition problem; the comparison of these algorithms as recognizers of grammatical facial expressions used in the conception of sentences in the Brazilian Language of Signs (Libras). The implementation and tests carried out with such algorithms showed that the automatic segmentation of grammatical facial expressions is practicable in user-dependent contexts. Regarding user-independent contexts, this is a challenge which demands the organization of a learning environment structured on datasets bigger and more diversified than those current available
9

Segmentação automática de Expressões Faciais Gramaticais com Multilayer Perceptrons e Misturas de Especialistas / Automatic Segmentation of Grammatical Facial Expressions with Multilayer Perceptrons and Mixtures of Experts

Maria Eduarda de Araújo Cardoso 02 October 2018 (has links)
O reconhecimento de expressões faciais é uma área de interesse da ciência da computação e tem sido um atrativo para pesquisadores de diferentes áreas, pois tem potencial para promover o desenvolvimento de diferentes tipos de aplicações. Reconhecer automaticamente essas expressões tem se tornado um objetivo, principalmente na área de análise do comportamento humano. Especialmente para estudo das línguas de sinais, a análise das expressões faciais é importante para a interpretação do discurso, pois é o elemento que permite expressar informação prosódica, suporta o desenvolvimento da estrutura gramatical e semântica da língua, e ajuda na formação de sinais com outros elementos básicos da língua. Nesse contexto, as expressões faciais são chamadas de expressões faciais gramaticais e colaboram na composição no sentido semântico das sentenças. Entre as linhas de estudo que exploram essa temática, está aquela que pretende implementar a análise automática da língua de sinais. Para aplicações com objetivo de interpretar línguas de sinais de forma automatizada, é preciso que tais expressões sejam identificadas no curso de uma sinalização, e essa tarefa dá-se é definida como segmentação de expressões faciais gramaticais. Para essa área, faz-se útil o desenvolvimento de uma arquitetura capaz de realizar a identificação de tais expressões em uma sentença, segmentando-a de acordo com cada tipo diferente de expressão usada em sua construção. Dada a necessidade do desenvolvimento dessa arquitetura, esta pesquisa apresenta: uma análise dos estudos na área para levantar o estado da arte; a implementação de algoritmos de reconhecimento de padrões usando Multilayer Perceptron e misturas de especialistas para a resolução do problema de reconhecimento da expressão facial; a comparação desses algoritmos reconhecedores das expressões faciais gramaticais usadas na concepção de sentenças na Língua Brasileira de Sinais (Libras). A implementação e teste dos algoritmos mostraram que a segmentação automática de expressões faciais gramaticais é viável em contextos dependentes do usuários. Para contextos independentes de usuários, o problema de segmentação de expressões faciais representa um desafio que requer, principalmente, a organização de um ambiente de aprendizado estruturado sobre um conjunto de dados com volume e diversidade maior do que os atualmente disponíveis / The recognition of facial expressions is an area of interest in computer science and has been an attraction for researchers in different fields since it has potential for development of different types of applications. Automatically recognizing these expressions has become a goal primarily in the area of human behavior analysis. Especially for the study of sign languages, the analysis of facial expressions represents an important factor for the interpretation of discourse, since it is the element that allows expressing prosodic information, supports the development of the grammatical and semantic structure of the language, and eliminates ambiguities between similar signs. In this context, facial expressions are called grammatical facial expressions. These expressions collaborate in the semantic composition of the sentences. Among the lines of study that explore this theme is the one that intends to implement the automatic analysis of sign language. For applications aiming to interpret signal languages in an automated way, it is necessary that such expressions be identified in the course of a signaling, and that task is called \"segmentation of grammatical facial expressions\'\'. For this area, it is useful to develop an architecture capable of performing the identification of such expressions in a sentence, segmenting it according to each different type of expression used in its construction. Given the need to develop this architecture, this research presents: a review of studies already carried out in the area; the implementation of pattern recognition algorithms using Multilayer Perceptron and mixtures of experts to solve the facial expression recognition problem; the comparison of these algorithms as recognizers of grammatical facial expressions used in the conception of sentences in the Brazilian Language of Signs (Libras). The implementation and tests carried out with such algorithms showed that the automatic segmentation of grammatical facial expressions is practicable in user-dependent contexts. Regarding user-independent contexts, this is a challenge which demands the organization of a learning environment structured on datasets bigger and more diversified than those current available
10

Applicering av maskininlärning för att predicera utfall av Kickstarter-projekt / Application of machine learning to predict outcome of Kickstarter-projects

Lidén, Rickard, In, Gabriel January 2021 (has links)
Crowdfunding är i den moderna digitala världen ett populärt sätt att samla in pengar till sitt projekt. Kickstarter är en av de ledande sidorna för crowdfunding. Predicering av ett Kickstarter-projekts framgång eller misslyckande kan därav vara av stort intresse för entreprenörer.Studiens syfte är att jämföra fyra olika algoritmers prediceringsförmåga på två olika Kickstarter-dataset. Det ena datasetet sträcker sig mellan åren 2020-2021, och det andra mellan åren 2016-2021. Algoritmerna som jämförs är KNN, Naive Bayes, MLP, och Random Forest.Av dessa fyra modeller så skapades i denna studie de bästa produktionsmodellerna av KNN och Random Forest. KNN var bäst för 2020-2021-datasetet, med 77,0% träffsäkerhet. Random Forest var bäst för 2016-2021-datasetet, med 76,8% träffsäkerhet. / Crowdfunding has in the modern, digitalized world become a popular method for gathering money for a project. Kickstarter is one of the most popular websites for crowdfunding. This means that predicting the success or failure of a Kickstarter-project by way of machine learning could be of great interest to entrepreneurs.The purpose of this study is to compare the predictive abilities of four different algorithms on two different Kickstarter-datasets. One dataset contains data in the span of the years 2020-2021, and the other contains data from 2016-2021. The algorithms used in this study are KNN, Naive Bayes, MLP and Random Forest.Out of these four algorithms, the top-performing prediction abilities for the two datasets were found in KNN and Random Forest. KNN was the best-performing algorithm for 2020-2021, with 77,0% accuracy. Random Forest had the top score for 2016-2021, with 76,8% accuracy. The language used in this study is Swedish.

Page generated in 0.0526 seconds