• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 448
  • 88
  • 40
  • 37
  • 21
  • 18
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • Tagged with
  • 760
  • 460
  • 275
  • 258
  • 207
  • 188
  • 186
  • 170
  • 134
  • 131
  • 116
  • 98
  • 90
  • 83
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Optical Path Length Multiplexing of Optical Fiber Sensors

Wavering, Thomas A. 23 February 1998 (has links)
Optical fiber sensor multiplexing reduces cost per sensor by designing a system that minimizes the expensive system components (sources, spectrometers, etc.) needed for a set number of sensors. The market for multiplexed optical sensors is growing as fiberoptic sensors are finding application in automated factories, mines, offshore platforms, air, sea, land, and space vehicles, energy distribution systems, medical patient surveillance systems, etc. Optical path length multiplexing (OPLM) is a modification to traditional white-light interferometry techniques to multiplex extrinsic Fabry-Perot interferometers and optical path length two-mode sensors. Additionally, OPLM techniques can be used to design an optical fiber sensor to detect pressure/force/acceleration and temperature simultaneously at a single point. While power losses and operating range restrictions limit the broadscale applicability of OPLM, it provides a way to easily double or quadruple the number of sensors by modifying the demodulation algorithm. The exciting aspect of OPLM is that no additional hardware is needed to multiplex a few sensors. In this way OPLM works with conventional technology and algorithms to drastically increase their efficiency. [1] / Master of Science
272

DMACS: a media access protocol for single-hop wavelength division multiplexed lightwave networks

Montgomery, Michael C. 23 June 2009 (has links)
This thesis proposes a new media access protocol for local area and metropolitan area all-optical networks employing wavelength division multiplexing (WDM). Through WDM, multiple channels are created on a single fiber, and an aggregate network bandwidth far greater than the peak electronic processing speed can be realized. The new protocol, Dynamic Media Access Control Scheme (DMACS), is based on the Dynamic Interleaved Slotted Aloha (DISA) protocol. It improves on DISA by adding a common control channel that provides reservations for constant bit-rate traffic, acknowledgments, and global flow control. DMACS supports connection setup and tear down, different traffic classes, flow control, and packet resequencing in an attempt to integrate features of the transport layer directly into the media access control layer. The performance of the DMACS protocol has been evaluated through analytical methods and simulation. It was found to be superior to the DISA protocol and to provide good performance that is relatively insensitive to the number of stations and the traffic conditions in the network. / Master of Science
273

Characterization of Optical Coupling and Back-reflection of Few Mode Fibers

Shipton, Matthew J. 01 September 2015 (has links)
The continued growth of the communications industry has caused interest in mode-division multiplexing (MDM) techniques to flourish in recent years. These techniques allow individual waveguide modes to be used as distinct channels. However, as with any versatile technique, it should be also useful and beneficial to extend its application to other areas. This work concerns itself with an initial conceptual design of a mode-division multiplexing (MDM) enabled optical sensor network that can use modes to interrogate either specific sensors or sensor subsystems, and specifically with quanitizing and optimizing the injection and detection of the signal of interest. A hypothetical test setup is demonstrated, and the major issue of back reflection burying the intended signal is addressed, analyzed, and improved. Improvements in the signal-to-background contrast ratio (SBCR) of approximately 10dB were achieved depending on fibre type and proximal face. Suggestions for extensions to further improve the SBCR as well as for applications of this system are discussed. / Master of Science
274

Multiwavelength modelocked semiconductor lasers for photonic access network applications

Mielke, Michael M. 01 October 2003 (has links)
No description available.
275

OPTICAL SLIP-RING CONNECTOR

Xu, Guoda, Bartha, John M., McNamee, Stuart, Rheaume, Larry, Khosrowabadi, Allen 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Current ground-based tracking systems at the DoD test and training ranges require transmission of a variety of signals from rotating platform to fixed control and process center. Implementation of commercial off the shelf (COTS) solution for transmitting high-speed, multiple-channel data signals over a rotational platform prompt the development of an advanced electro-optic hybrid rotating-to-fixed information transmission technology. Based on current demand, an Air Force-sponsored Small Business Innovative Research (SBIR) contract has been awarded to Physical Optics Corporation (POC) to modify existing tracking mounts with a unique electro-optic hybrid rotary joint (EOHRJ). The EOHRJ under current development is expected to provide the following features: 1) include a specially designed electrical slip-ring, which is able to accommodate hundreds of transmission channels, including electrical power, control, feedback, and low-speed data signals; 2) include an optical fiber slip-ring which, by incorporating with electrical time division mulitplexing (TDM) and optical wavelength division multiplexing (WDM) technologies, is able to provide multiple channel, high data rate (over gigabits per second), and bi-directional signal transmission; and 3) is designed to be reliable for harsh environmental operation, adaptive to stringent size requirement, and accommodating to existing electrical and mechanical interfaces. Besides the military use, other possible commercial applications include on board monitoring of satellite spinners, surveillance systems, instrumentation and multi spectral vision systems, emergency/medical instruments, remote sensing, and robotics.
276

Optimal Pilot Tones For Interleaved Orthogonal Frequency Division Multiplexing Systems

Vinod, T S 01 1900 (has links) (PDF)
No description available.
277

Adaptive Control of Waveguide Modes in Two-Mode Fibers

Lu, Peng 04 April 2016 (has links)
Few mode fibers and multimode fibers (MMFs) are traditionally regarded as unsuitable for important applications such as communications and sensing. A major challenge in using MMFs for aforementioned applications is how to precisely control the waveguide modes propagating within MMFs. In this thesis, we experimentally demonstrate a generic method for controlling the linearly polarized (LP) modes within a two-mode fiber (TMF). Our method is based on adaptive optics (AO), where one utilizes proper feedback signals to shape the wavefront of the input beam in order to achieve the desired LP mode composition. In the first part of this thesis, we demonstrate the feasibility of AO-based mode control by using the correlation between the experimentally measured field distribution and the desired mode profiles as feedback for wavefront optimization. Selectively excitation of pure LP modes or their combinations at the distal end of a TMF are shown. Furthermore, we demonstrate that selective mode excitation in the TMF can be achieved by using only 5×5 independent phase blocks. Afterwards, we extend our AO-based mode control method to more practical scenarios, where feedback signals are provided by all-fiber devices such as a directional fiber coupler or fiber Bragg gratings (FBGs). Using the coupling ratio of a directional coupler as feedback, we demonstrate adaptive control of LP modes at the two output ports of the directional coupler. With feedback determined by the relative magnitude of optical power reflected by a FBG and the transmitted power, selective excitations of the LP01 and the LP11 modes are experimentally shown. As the final component of this thesis, we experimentally combine the AO-based mode control with time-division-multiplexing. By choosing reflected pulses with appropriate arrival time for mode control, we can selectively excite the LP11 mode at different FBG locations within the TMF, based on the ratio of optical signals reflected by FBGs in the TMF and the transmitted signal. Using two lasers set at the two FBG peak reflection wavelengths associated with the LP01 and the LP11 modes, we can accomplish AO-based mode control within a TMF by using only the reflection signals from the FBG. By using the ratio of the reflected signals of two lasers as feedback, we demonstrate selective excitation of almost pure LP01 or LP11 mode at the FBG location within the TMF. The method developed in this thesis is generic and can be extended to many other applications using appropriately chosen feedback signals. It is possible to generalize the AO-based mode control method to MMF as well. This method may find important applications in MMF-based communication, sensing and imaging et. al. in the future. / Ph. D.
278

Achieving The Optimal Diversity-Multiplexing Gain Tradeoff For MIMO Channels With And Without Feedback

Pawar, Sameer A 06 1900 (has links) (PDF)
No description available.
279

Diversity Multiplexing Tradeoff and Capacity Results in Relayed Wireless Networks

Oveis Gharan, Shahab January 2010 (has links)
This dissertation studies the diversity multiplexing tradeoff and the capacity of wireless multiple-relay network. In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO) relay network. An amplify-and-forward relaying scheme, Incremental Cooperative Beamforming, is introduced and shown to achieve the capacity of the network in the asymptotic case of either the number of relays or the power of each relay goes to infinity. In part 2, we study the general setup of multi-antenna multi-hop multiple- relay network. We propose a new scheme, which we call random sequential (RS), based on the amplify-and-forward relaying. Furthermore, we derive diversity- multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna multiple-relay networks. It is shown that for single-antenna two-hop multiple- access multiple-relay (K > 1) networks (without direct link between the source(s) and the destination), the proposed RS scheme achieves the optimum DMT. In part 3, we characterize the maximum achievable diversity gain of the multi- antenna multi-hop relay network and we show that the proposed RS scheme achieves the maximum diversity gain. In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna multiple-relay networks. First, we study the case of a multi-antenna full-duplex single-relay two-hop network, for which we show that the RS achieves the optimum DMT. Applying this result, we derive a new achievable DMT for the case of multi-antenna half-duplex parallel relay network. Interestingly, it turns out that the DMT of the RS scheme is optimum for the case of multi-antenna two parallel non-interfering half-duplex relays. Furthermore, we show that random unitary matrix multiplication also improves the DMT of the Non-Orthogonal AF relaying scheme in the case of a multi-antenna single relay channel. Finally, we study the general case of multi-antenna full-duplex relay networks and derive a new lower-bound on its DMT using the RS scheme. Finally, in part 5, we study the multiplexing gain of the general multi-antenna multiple-relay networks. We prove that the traditional amplify-forward relaying achieves the maximum multiplexing gain of the network. Furthermore, we show that the maximum multiplexing gain of the network is equal to the minimum vertex cut-set of the underlying graph of the network, which can be computed in polynomial time in terms of the number of network nodes. Finally, the argument is extended to the multicast and multi-access scenarios.
280

Errors In Delay Differentiation In Statistical Multiplexing

Mallesh, K 05 1900 (has links)
Different applications of communication networks have different requirements that depend on the type of application. We consider the problem of differentiating between delay-sensitive applications based on their average delay requirements, as may be of interest in signalling networks. We consider packets of different classes that are to be transmitted on the same link with different average delay requirements, to reside in separate queues with the arrival statistics for the queues being specified. This statistical multiplexer has to schedule packets from different queues in so that the average delays of the queues approach the specified target delays as quickly as possible. For simplicity, we initially consider a discrete-time model with two queues and a single work-conserving server, with independent Bernoulli packet arrivals and unit packet service times. With arrival rates specified, achieving mean queue lengths in a ratio which corresponds to the ratio of target mean delays is a means of achieving individual target mean delays. We formulate the problem in the framework of Markov decision theory. We study two scheduling policies called Queue Length Balancing and Delay Balancing respectively, and show through numerical computation that the expectation of magnitude of relative error in θ (1/m) and θ (1/√m) respectively, and that the expectation of the magnitude of relative error in weighted average delays decays as θ (1/√m) and θ (1/m) respectively, where m is the averaging interval length. We then consider the model for an arbitrary number of queues each with i.i.d. batch arrivals, and analyse the errors in the average delays of individual queues. We assume that the fifth moment of busy period is finite for this model. We show that the expectation of the absolute value of error in average queue length for at least one of the queues decays at least as slowly as θ (1/√m), and that the mean squared error in queue length for at least one of the queues decays at least as slowly as θ (1/m). We show that the expectation of the absolute value of error in approximating Little’s law for finite horizon is 0 (1/m). Hence, we show that the mean squared error in delay for at least one of the queues decays at least slowly as θ (1/m). We also show that if the variance of error in delay decays for each queue, then the expectation of the absolute value of error in delay for at least one of the queues decays at least as slowly as θ (1/√m).

Page generated in 0.0693 seconds