• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vícestupňové vnořené vzdálenosti v stochastické optimalizaci / Multistage nested distance in stochastic optimization

Horejšová, Markéta January 2018 (has links)
Multistage stochastic optimization is used to solve many real-life problems where decisions are taken at multiple times, e.g., portfolio selection problems. Such problems need the definition of stochastic processes, which are usually approxim- ated by scenario trees. The choice of the size of the scenario trees is the result of a compromise between the best approximation and the possibilities of the com- puter technology. Therefore, once a master scenario tree has been generated, it can be needed to reduce its dimension in order to make the problem computation- ally tractable. In this thesis, we introduce several scenario reduction algorithms and we compare them numerically for different types of master trees. A simple portfolio selection problem is also solved within the study. The distance from the initial scenario tree, the computational time, and the distance between the optimal objective values and solutions are compared for all the scenario reduction algorithms. In particular, we adopt the nested distance to measure the distance between two scenario trees. 1
2

Ekonomické růstové modely ve stochastickém prostředí / Economic Growth Models in Stochastic Environment

Uhliar, Miroslav January 2017 (has links)
No description available.
3

[pt] OTIMIZAÇÃO DE ESTRATÉGIAS DINÂMICAS DE COMERCIALIZAÇÃO DE ENERGIA COM RESTRIÇÕES DE RISCO SOB INCERTEZAS DE CURTO E LONGO PRAZO / [en] RISK-CONSTRAINED OPTIMAL DYNAMIC TRADING STRATEGIES UNDER SHORT- AND LONG-TERM UNCERTAINTIES

ANA SOFIA VIOTTI DAKER ARANHA 23 November 2021 (has links)
[pt] Mudanças recentes em mercados de energia com alta penetração de fontes renováveis destacaram a necessidade de estratégias complexas que, além de maximizar o lucro, proporcionam proteção contra a volatilidade de preços e incerteza na geração. Neste contexto, este trabalho propõe um modelo dinâmico para representar a tomada de decisão sequencial no cenário atual. Ao contrário de trabalhos relatados anteriormente, este método fornece uma estrutura para considerar as incertezas nos níveis estratégico (longo prazo) e operacional (curto prazo) simultaneamente. É utilizado um modelo de programação estocástica multiestágio em que as correlações entre previsões de vazão, geração renovável, preços spot e preços contratuais são consideradas por meio de uma árvore de decisão multi-escala. Além disso, a aversão ao risco do agente comercializador é considerada por meio de restrições intuitivas e consistentes no tempo. É apresentado um estudo de caso do setor elétrico brasileiro, no qual dados reais foram utilizados para definir a estratégia ótima de comercialização de um gerador de energia eólica, condicionada à evolução futura dos preços de mercado. O modelo fornece ao comercializador informações úteis, como o montante contratado ideal, além do momento ótimo de negociação e duração dos contratos. Além disso, o valor desta solução é demonstrado quando comparado a abordagens estáticas, através de uma medida de desempenho baseada no equivalente de certo do problema multiestágio. / [en] Recent market changes in power systems with high renewable energy penetration highlighted the need for complex profit maximization and protection against price volatility and generation uncertainty. This work proposes a dynamic model to represent sequential decision making in this current scenario. Unlike previously reported works, we contemplate uncertainties in both strategic (long-term) and operational (short-term) levels, all considered as pathdependent stochastic processes. The problem is represented as a multistage stochastic programming model in which the correlations between inflow forecasts, renewable generation, spot and contract prices are accounted for by means of interconnected long- and short-term decision trees. Additionally, risk aversion is considered through intuitive time-consistent constraints. A case study of the Brazilian power sector is presented, in which real data was used to define the optimal trading strategy of a wind power generator, conditioned to the future evolution of market prices. The model provides the trader with useful information such as the optimal contractual amount, settlement timing, and term. Furthermore, the value of this solution is demonstrated when compared to state-of-the-art static approaches using a multistage-based certainty equivalent performance measure.

Page generated in 0.0321 seconds