Spelling suggestions: "subject:"[een] MULTISTAGE STOCHASTIC OPTIMIZATION"" "subject:"[enn] MULTISTAGE STOCHASTIC OPTIMIZATION""
1 |
Vícestupňové vnořené vzdálenosti v stochastické optimalizaci / Multistage nested distance in stochastic optimizationHorejšová, Markéta January 2018 (has links)
Multistage stochastic optimization is used to solve many real-life problems where decisions are taken at multiple times, e.g., portfolio selection problems. Such problems need the definition of stochastic processes, which are usually approxim- ated by scenario trees. The choice of the size of the scenario trees is the result of a compromise between the best approximation and the possibilities of the com- puter technology. Therefore, once a master scenario tree has been generated, it can be needed to reduce its dimension in order to make the problem computation- ally tractable. In this thesis, we introduce several scenario reduction algorithms and we compare them numerically for different types of master trees. A simple portfolio selection problem is also solved within the study. The distance from the initial scenario tree, the computational time, and the distance between the optimal objective values and solutions are compared for all the scenario reduction algorithms. In particular, we adopt the nested distance to measure the distance between two scenario trees. 1
|
2 |
Ekonomické růstové modely ve stochastickém prostředí / Economic Growth Models in Stochastic EnvironmentUhliar, Miroslav January 2017 (has links)
No description available.
|
3 |
[pt] OTIMIZAÇÃO DE ESTRATÉGIAS DINÂMICAS DE COMERCIALIZAÇÃO DE ENERGIA COM RESTRIÇÕES DE RISCO SOB INCERTEZAS DE CURTO E LONGO PRAZO / [en] RISK-CONSTRAINED OPTIMAL DYNAMIC TRADING STRATEGIES UNDER SHORT- AND LONG-TERM UNCERTAINTIESANA SOFIA VIOTTI DAKER ARANHA 23 November 2021 (has links)
[pt] Mudanças recentes em mercados de energia com alta penetração de fontes
renováveis destacaram a necessidade de estratégias complexas que, além de
maximizar o lucro, proporcionam proteção contra a volatilidade de preços
e incerteza na geração. Neste contexto, este trabalho propõe um modelo
dinâmico para representar a tomada de decisão sequencial no cenário atual.
Ao contrário de trabalhos relatados anteriormente, este método fornece uma
estrutura para considerar as incertezas nos níveis estratégico (longo prazo)
e operacional (curto prazo) simultaneamente. É utilizado um modelo de
programação estocástica multiestágio em que as correlações entre previsões
de vazão, geração renovável, preços spot e preços contratuais são consideradas
por meio de uma árvore de decisão multi-escala. Além disso, a aversão ao risco
do agente comercializador é considerada por meio de restrições intuitivas e
consistentes no tempo. É apresentado um estudo de caso do setor elétrico
brasileiro, no qual dados reais foram utilizados para definir a estratégia
ótima de comercialização de um gerador de energia eólica, condicionada à
evolução futura dos preços de mercado. O modelo fornece ao comercializador
informações úteis, como o montante contratado ideal, além do momento
ótimo de negociação e duração dos contratos. Além disso, o valor desta
solução é demonstrado quando comparado a abordagens estáticas, através de
uma medida de desempenho baseada no equivalente de certo do problema
multiestágio. / [en] Recent market changes in power systems with high renewable energy penetration
highlighted the need for complex profit maximization and protection
against price volatility and generation uncertainty. This work proposes a dynamic
model to represent sequential decision making in this current scenario.
Unlike previously reported works, we contemplate uncertainties in both strategic
(long-term) and operational (short-term) levels, all considered as pathdependent
stochastic processes. The problem is represented as a multistage
stochastic programming model in which the correlations between inflow forecasts,
renewable generation, spot and contract prices are accounted for by
means of interconnected long- and short-term decision trees. Additionally, risk
aversion is considered through intuitive time-consistent constraints. A case
study of the Brazilian power sector is presented, in which real data was used
to define the optimal trading strategy of a wind power generator, conditioned
to the future evolution of market prices. The model provides the trader with
useful information such as the optimal contractual amount, settlement timing,
and term. Furthermore, the value of this solution is demonstrated when compared
to state-of-the-art static approaches using a multistage-based certainty
equivalent performance measure.
|
Page generated in 0.0321 seconds