• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 129
  • 40
  • 19
  • 13
  • 8
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 493
  • 493
  • 118
  • 118
  • 89
  • 70
  • 65
  • 65
  • 59
  • 53
  • 52
  • 51
  • 49
  • 44
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Optimising the Choice of Interpolation Nodes with a Forbidden Region

Bengtsson, Felix, Hamben, Alex January 2022 (has links)
We consider the problem of optimizing the choice of interpolation nodes such that the interpolation error is minimized, given the constraint that none of the nodes may be placed inside a forbidden region. Restricting the problem to using one-dimensional polynomial interpolants, we explore different ways of quantifying the interpolation error; such as the integral of the absolute/squared difference between the interpolated function and the interpolant, or the Lebesgue constant, which compares the interpolant with the best possible approximating polynomial of a given degree. The interpolation error then serves as a cost function that we intend to minimize using gradient-based optimization algorithms. The results are compared with existing theory about the optimal choice of interpolation nodes in the absence of a forbidden region (mainly due to Chebyshev) and indicate that the Chebyshev points of the second kind are near-optimal as interpolation nodes for optimizing the Lebesgue constant, whereas placing the points as close as possible to the forbidden region seems optimal for minimizing the integral of the difference between the interpolated function and the interpolant. We conclude that the Chebyshev points of the second kind serve as a great choice of interpolation nodes, even with the constraint on the placement of the nodes explored in this paper, and that the interpolation nodes should be placed as close as possible to the forbidden region in order to minimize the interpolation error.
202

Matrices and algebras in the canonical tensor model / 正準テンソル模型における行列と代数

Obster, Dennis 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24168号 / 理博第4859号 / 新制||理||1695(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 笹倉 直樹, 准教授 髙山 史宏, 教授 橋本 幸士 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
203

Numerical Methods for Moving-Habitat Models in One and Two Spatial Dimensions

MacDonald, Jane Shaw 25 October 2022 (has links)
Temperature isoclines are shifting with global warming. To survive, species with thermal niches must shift their geographical ranges to stay within the bounds of their suitable habitat, or acclimate to a new environment. Mathematical models that study range shifts are called moving-habitat models. The literature is rich and includes modelling with reaction-diffusion equations. Much of this literature represents space by the real line, with a handful studying 2-dimensional domains that are unbounded in at least one direction. The suitable habitat is represented by the set over which the demographics (reaction term) has a positive net growth rate. In some cases, this is a bounded set, in others, it is not. The unsuitable habitat is represented by the set over which the net growth rate is negative. The environmental shift is captured by an imposed shift of the suitable habitat. Individuals respond to their environment via their movement behaviour and many display habitat-dependent dispersal rates and a habitat bias. Such behaviour corresponds to a jump in density across the interface of suitable and unsuitable habitat. The questions motivating moving-habitat models are: when can a species track its shifting habitat and what is the impact of an environmental shift on a persisting species. Without closed form solutions, researchers rely on numerical methods to study the latter, and depending on the movement of the interface, the former may require numerical tools as well. We construct and analyse two numerical methods, a finite difference (FD) scheme and a finite element (FE) method in 1- and 2-dimensional space, respectively. The FD scheme can capture arbitrary movement of the boundary, and the FE method rather general shapes for the suitable habitat. The difficulty arises in capturing the jump across a shifting interface. We construct a reference frame in which the interfaces are fixed in time. We capture the jump in density with a clever placing of the nodes in the FD scheme, and through a Lagrange multiplier in the FE method. With biological applications, we demonstrate the power of our solvers in advancing research for moving-habitat models.
204

AN ANALYSIS OF THE MOMENTS AND APPROXIMATION OF A STOCHASTIC HODGKIN-HUXLEY MODEL OF NEURON POTENTIAL

Davidson, Daniel 01 August 2023 (has links) (PDF)
In this thesis, we introduce several closely related stochastic models which generalize the deterministic Hodgkin-Huxley formalism to an SDE framework. We provide analytical results on the existence and uniqueness of solutions as well as the exact formulas for the moments of a simplified model, with simplifications motivated by the experiments performed by Hodgkin and Huxley in their seminal paper.For more complicated models, we provide an approach for the approximation and simulation of solutions to the corresponding SDEs, and show several realizations of the sample paths and moments of these simulations to verify qualitative behavior in this case. All code for the project is written in the Julia language and can be obtained upon request by the reader.
205

Solving Ordinary Differential Equations and Systems using Neural Network Methods / Att Lösa Ordinära Differentialekvationer och System med hjälp av Neurala Nätverk

Westrin, Mimmi January 2023 (has links)
The applications of differential equations are many. However, many differential equations modelling real-world scenarios are very complex and it can be of great difficulty to find an exact solution if one even exists. Thus, it is of importance to be able to approximate solutions of differential equations. Here, a method using neural networks is explored and its performance is compared to that of a numerical method. To illustrate the method, two first order, two second order and two first order systems of ordinary differential equations are explored. The systems are the Lotka-Volterra system and the SEIR (Susceptible, Exposed, Infected, Removed) epidemiological model. The first four examples have exact solutions to compare to and the observations are then used as a basis when discussing the results of the systems. The results of the thesis show that while the neural network method takes longer to deliver an approximation, it continuously gives better approximations than the implicit Euler method used for comparison. The main contribution of this thesis is the comparison done of the performances of the neural network method and the implicit Euler method. / Det finns många användningsområden för differentialekvationer. Däremot är många differentialekvationer som modellerar verkligheten komplexa och det kan vara svårt, om inte omöjligt, att hitta en exakt lösning. På grund av detta är det viktigt att ha metoder som kan approximera lösningar till differentialekvationer. Därför undersöks här en metod som använder sig av neurala nätverk. Dess resultat blir sedan jämförda med en numerisk metod. För att illustrera metoden presenteras två ekvationer av första ordningen, två ekvationer av andra ordningen och två system av differentialekvationer. Systemen som undersöks är Lotka-Volterra ekvationerna samt SEIR (Susceptible, Exposed, Infected, Removed) modellen. De första fyra exemplen som undersöks har exakta lösningar att jämföra med och dessa observationer används sedan vid diskussionerna gällande systemen. Resultaten visar att medan metoden som använder neurala nätverkar tar längre tid att exekvera, så ger metoden bättre approximationer än den implicita Euler metoden som användes som jämförelse. Det huvudsakliga bidraget med det här examensarbetet är jämförelsen av hur de två metoderna presterar.
206

Design and Location Optimization of Electrically Small Antennas Using Modal Techniques

Chalas, Jeffrey Michael 18 May 2015 (has links)
No description available.
207

SIMULATION OF TURBULENT SUPERSONIC SEPARATED BASE FLOWS USING ENHANCED TURBULENCE MODELING TECHNIQUES WITH APPLICATION TO AN X-33 AEROSPIKE ROCKET NOZZLE SYSTEM

Papp, John Laszlo January 2000 (has links)
No description available.
208

Development of a Time Domain Hybrid Finite Difference/Finite Element Method For Solutions to Maxwell’s Equations in Anisotropic Media

Kung, Christopher W. 26 June 2009 (has links)
No description available.
209

Multiple interval methods for ODEs with an optimization constraint

Yu, Xinli January 2020 (has links)
We are interested in numerical methods for the optimization constrained second order ordinary differential equations arising in biofilm modelling. This class of problems is challenging for several reasons. One of the reasons is that the underlying solution has a steep slope, making it difficult to resolve. We propose a new numerical method with techniques such as domain decomposition and asynchronous iterations for solving certain types of ordinary differential equations more efficiently. In fact, for our class of problems after applying the techniques of domain decomposition with overlap we are able to solve the ordinary differential equations with a steep slope on a larger domain than previously possible. After applying asynchronous iteration techniques, we are able to solve the problem with less time.~We provide theoretical conditions for the convergence of each of the techniques. The other reason is that the second order ordinary differential equations are coupled with an optimization problem, which can be viewed as the constraints. We propose a numerical method for solving the coupled problem and show that it converges under certain conditions. An application of the proposed methods on biofilm modeling is discussed. The numerical method proposed is adopted to solve the biofilm problem, and we are able to solve the problem with larger thickness of the biofilm than possible before as is shown in the numerical experiments. / Mathematics
210

A Meshless Method Approach for Solving Coupled Thermoelasticity Problems

Gerace, Salvadore 01 January 2006 (has links)
Current methods for solving thennoelasticity problems involve using finite element analysis, boundary element analysis, or other meshed-type methods to determine the deflections under an imposed temperature/stress field. This thesis will detail a new approach using meshless methods to solve these types of thermoelasticity problems in which the solution is independent of boundary and internal meshing. With the rapidly increasing availability and performance of computer workstations and clusters, the major time requirement for solving a thermoelasticity model is no longer the computation time, but rather the problem setup. Defining the required mesh for a complex geometry can be extremely complicated and time consuming, and new methods are desired that can reduce this model setup time. The proposed meshless methods completely eliminate the need for a mesh, and thus, eliminate the need for complicated meshing procedures. Although the savings gain due to eliminating the meshing process would be more than sufficient to warrant further study, the localized meshless method can also be comparable in computational speed to more traditional finite element solvers when analyzing complex problems. The reduction of both setup and computational time makes the meshless approach an ideal method of solving coupled thermoelasticity problems. Through the development of these methods it can be determined whether they are feasible as potential replacements for more traditional solution methods. More specifically, two methods will be covered in depth from the development to the implementation. The first method covered will be the global meshless method and the second will be the improved localized method. Although they both produce similar results in terms of accuracy, the localized method greatly improves upon the stability and computation time of the global method.

Page generated in 0.0397 seconds