• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 19
  • 15
  • 14
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 155
  • 46
  • 25
  • 25
  • 18
  • 15
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tchebycheff approximation

Gauld, Joseph Warren January 1963 (has links)
Thesis (M.A.)--Boston University
2

Ueber Tchebychefsche Annäherungsmethoden

Kirchberger, Paul, January 1902 (has links)
Thesis (doctoral)--Georg-Augustus-Universität zu Göttingen, 1902. / Vita.
3

Direct Chebyshev approximation

Henderson, John Robert January 1963 (has links)
The Approximation Problem and specifically, "direct" rational Chebyshev approximation is discussed. A brief summary is made of "direct" Chebyshev approximation. The remainder of the thesis is devoted to various aspects of a "Remes-type" Algorithm for rational Chebyshev approximation, as proposed by Fraser and Hart. It is finally concluded that the inherent difficulties of the method would generally outweigh the advantages of the rational approximation which it obtains. / Science, Faculty of / Mathematics, Department of / Graduate
4

Chebyshev approximation by piecewise continuous functions

Chand, Donald Rajinder January 1965 (has links)
Thesis (Ph.D.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / This paper discusses the following problem of approximation theory: a continuous function f(x) is to approximated over an interval alpha </= x </= B by N not necessarily connected polynomials of a given degree n, in such a way that the maximum error magnitude is a minimum. Each polynomial is associated with one subinterval [uj, uj+1]. If the end points Ui were specified in advance, the problem would reduce to N independent problems of the same type, namely, the fitting of a single polynomial in the Chebyshev sense. Here, however, the end points are taken as unknowns and the principal problem is to determine them. The paper presents a proof of the existence of the best approximation and examples showing the solution, in general, is not unique. However, in the special case of approximation of convex functions by line segments, the solution is shown to be unique. Further in this case a simple characterization of the solution is obtained and it is shown that the problem may be reduced analytically to a stage where in order to determine Ui computationally, it is only necessary to solve a system of equations rather than minimize a function. Results obtained by a dynamic programming method using a digital computer (IBM 7090) are used for illustration. / 2031-01-01
5

Methods of Chebyshev approximation

Rosman, Bernard Harvey January 1965 (has links)
Thesis (M.A.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / This paper deals with methods of Chebyshev approximation. In particular polynomial approximation of continuous functions on a finite interval are discussed. Chapter I deals with the existence and uniqueness of Chebyshev or C-polynomials. In addition, some properties of the extremal points of the error function are derived, where the error fUnction E(x) = f(x) - p(x), p(x) being the C-polynomial. Chapter II discusses a method for finding the C-polynomial of degree n--the exchange method. After choosing a set of n+2 distinct abscissas, or a reference set, the so-called levelled reference polynomial is computed by the method of divided differences or by using the approximation errors of this polynomial. A point xj of maximal error is obtained and introduced into a new reference. A new levelled reference polynomial is then computed. This process continues until a reference is gotten, whose reference deviation equals the maximal approximating error of the levelled reference polynomial. The reference deviation is the common absolute value of the levelled reference polynomial at each of the reference points. The levelled reference polynomial for this reference is then shown to be the desired C-polynomial. Chapter III deals with phase methods for constructing the a-polynomial. It is shown that under suitable restrictions, if a Pn, A and €(phi) can be found such that the basic relation f(cos phi) = Pn(cos phi) + A cos[(n+1)phi + E(phi)] is satisfied on the approximation interval, then Pn is the a-polynomial. Two methods for finding the amplitude A and the phase function €(phi) are discussed. The complex method assumes f to be analytic on a domain and uses Cauchy's integral formula to obtain new values of €(phi), starting with a set of initial values. These values in turn generate new values of Pn and A. The values of Pn as well as values of A and €(phi) at certain points are gotten through convergence of this iterative scheme. Then an interpolation formula is used to obtain Pn from its values at these points. The second method attempts to find A, €(phi) and Pn so as to satisfy the basic relation only on a discrete set of points. First, assuming €(phi) so small that cos €(phi) may be replaced by 1, an expression is obtained for Pn(cos phi). In the general case, a system of phase equations is given, from which €(phi), A and hence Pn may be obtained. Although these results are valid only on a discrete set of points in the approximation interval, the polynomial derived in this way represents a good approximation to f(x). / 2031-01-01
6

A survey on Okounkov bodies.

January 2011 (has links)
Lee, King Leung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leave 95). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.6 / Chapter 1.1 --- Organization --- p.10 / Chapter 2 --- Semigroups and Cones --- p.13 / Chapter 2.1 --- Relation between Semigroups and Cones --- p.13 / Chapter 2.2 --- Subadditive Functions on Semigroups --- p.23 / Chapter 2.3 --- Relation between Cones and Bases --- p.29 / Chapter 3 --- General Theories of Okounkov Bodies --- p.33 / Chapter 3.1 --- Okounkov Bodies and Volumes --- p.33 / Chapter 3.2 --- Relation of Subadditive Functions on Semigroups and Okounkov Bodies --- p.39 / Chapter 3.3 --- Convex Functions on Okounkov Bodies --- p.47 / Chapter 4 --- Okounkov Bodies and Complex Geometry --- p.55 / Chapter 4.1 --- Holomorphic Line Bundles --- p.55 / Chapter 4.2 --- Chebyshev Transform --- p.65 / Chapter 4.3 --- Bernstein-Markov Norms --- p.74 / Chapter 5 --- Applications of Okounkov Bodies --- p.81 / Chapter 5.1 --- Relative Energy of Weights --- p.81 / Chapter 5.2 --- Computational Methods and Some Examples --- p.89 / Bibliography --- p.95
7

A Tiling Approach to Chebyshev Polynomials

Walton, Daniel 01 May 2007 (has links)
We present a combinatorial interpretation of Chebyshev polynomials. The nth Chebyshev polynomial of the first kind, Tn(x), counts the sum of all weights of n-tilings using light and dark squares of weight x and dominoes of weight −1, and the first tile, if a square must be light. If we relax the condition that the first square must be light, the sum of all weights is the nth Chebyshev polynomial of the second kind, Un(x). In this paper we prove many of the beautiful Chebyshev identities using the tiling interpretation.
8

Data Smoothing: Research 2002

Strang, Gilbert 01 1900 (has links)
My research is concentrated on applications of linear algebra in engineering, including wavelet analysis and structured matrices. This paper will appear in the book Mathematical Systems Theory (J. Rosenthal and D. Gilliam, editors) IMA Volumes in Mathematics, Springer 2002. / Singapore-MIT Alliance (SMA)
9

Méthodes de Chebyshev d'ordres supérieurs pour l'optimisation non linéaire, sans contrainte et différentiable

Kchouk, Bilel January 2012 (has links)
Dans cette Thèse par article, nous nous intéressons au domaine de l'optimisation sans contrainte, non linéaire et différentiable. En considérant la recherche d'un optimum de la fonction f : R[indice supérieur n] [flèche vers la droite] R, on se restreint dans ce travail à chercher une racine x* de la fonction F = [triangle pointant vers le bas] f : R[indice supérieur n] [flèche vers la droite] R[indice supérieur n], c'est-à-dire un point stationnaire de la fonction f. Notre objectif a été de proposer une vision "différente" des méthodes d'ordres supérieurs. À cet effet, cette Thèse regroupera quatre articles qui soulignent le cheminement de notre travail de doctorat et la logique de notre recherche. Dans un premier article, qui servira d'introduction et de mise en contexte de cette Thèse, nous revenons sur les méthodes connues d'ordres supérieurs. Les méthodes de Newton, Chebyshev, Halley et SuperHalley ont en effet été étudiées dans différents travaux. Dans cet article, nous exhibons certaines problématiques reliées à ces méthodes : comment formuler correctement et intelligemment les méthodes utilisant des dérivées d'ordres supérieurs, comment mieux calculer leur complexité, comment vérifier leur convergence. Dans un second article, l'idée des méthodes d'ordres supérieures perçues comme directions de déplacement est proposée. En réalité, cet article exploratoire pose les bases de notre idée principale, les pistes de réflexion, les sources d'optimisme quand [i.e. quant] à l'efficacité de telles méthodes. Nous y proposons deux familles de méthodes : celle de type Halley, qui généralise et regroupe les méthodes de Halley et SuperHalley ; et celle de type Chebyshev, qui englobe et développe les algorithmes de Newton, Chebyshev, et les méthodes d'extrapolations de Jean-Pierre Dussault. Par ailleurs, dans ce chapitre, nous démontrons les propriétés de convergence (dans le cas réel) de telles méthodes et les illustrons dans un cas spécifique. Le troisième article constitue quant à lui le coeur de notre travail. Certaines pistes proposées dans le précédent article ont été abandonnées (la famille de méthode Halley) au profit d'autres plus prometteuses (la famille Chebyshev). Dans ce chapitre, nous élaborons et définissons précisément les méthodes de type Chebyshev d'ordres supérieurs. Une formulation plus globale nous permet d'y regrouper les méthodes d'extrapolations d'ordres supérieurs à 3. La convergence dans R[indice supérieur n] est démontrée (et non plus simplement dans le cas scalaire). Pour cela, nous nous appuyons sur la méthode de Shamanskii, que l'on retrouvera en fin d'article et au chapitre 4. Dans cet article, nous accordons une importance primordiale à la notion d'efficacité d'un algorithme, et en ce sens, nous définissons plus minutieusement (que la quasi-totalité des articles consultés) la notion de coût de calcul d'un algorithme. Cela nous permet de montrer que les méthodes de Chebyshev d'ordres supérieurs concurrencent les méthodes de Shamanskii (c'est-à-dire la méthode de Shamanskii à différents ordres d'itérations), connues pour être des références difficilement battables. En ce sens, plus les problèmes étudiés ont une grande taille, plus l'efficacité de nos méthodes est optimale, en comparaison avec d'autres algorithmes. La partie annexe concerne un complément, effectué dans le cadre de notre recherche. N'ayant pas été publié, nous en énoncons les résultats principaux comme piste de recherche. En effet, nos travaux ont concerné les problèmes en optimisation sans distinction autre que celle du domaine précis d'étude (des fonctions différentiables, sans contraintes, non linéaires). Or dans de nombreux cas, les problèmes que l'on cherche à minimiser ont des structures particulières : certaines fonctions ont des Hessiens creux, dont les éléments nuls sont structurés et identifiables. Autrement dit, il est concevable d'affiner nos travaux pour des cas plus spécifiques, ceux des systèmes dits "sparse". En particulier, les systèmes par bande constituent une illustration récurrente de ce type de fonctions. Nous revenons donc avec certains détails de coûts de calculs et d'efficacités de certains algorithmes présentés dans nos articles.
10

Chebychev approximations in network synthesis.

Kwan, Robert Kwok-Leung January 1966 (has links)
No description available.

Page generated in 0.0269 seconds