• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 42
  • 18
  • 13
  • 10
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 459
  • 459
  • 208
  • 185
  • 146
  • 113
  • 100
  • 96
  • 94
  • 74
  • 64
  • 63
  • 61
  • 61
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Sémantický popis obrazovky embedded zařízení / Semantic description of the embedded device screen

Horák, Martin January 2020 (has links)
Tato diplomová práce se zabývá detekcí prvků uživatelského rozhraní na obrázku displejetiskárny za použití konvolučních neuronových sítí. V teoretické části je provedena rešeršesoučasně používaných architektur pro detekci objektů. V praktické čísti je probrána tvorbagalerie, učení a vyhodnocování vybraných modelů za použití Tensorflow ObjectDetectionAPI. Závěr práce pojednává o vhodnosti vycvičených modelů pro zadaný úkol.
72

Machine vision for automation of earth-moving machines : Transfer learning experiments with YOLOv3

Borngrund, Carl January 2019 (has links)
This master thesis investigates the possibility to create a machine vision solution for the automation of earth-moving machines. This research was done as without some type of vision system it will not be possible to create a fully autonomous earth moving machine that can safely be used around humans or other machines. Cameras were used as the primary sensors as they are cheap, provide high resolution and is the type of sensor that most closely mimic the human vision system. The purpose of this master thesis was to use existing real time object detectors together with transfer learning and examine if they can successfully be used to extract information in environments such as construction, forestry and mining. The amount of data needed to successfully train a real time object detector was also investigated. Furthermore, the thesis examines if there are specifically difficult situations for the defined object detector, how reliable the object detector is and finally how to use service-oriented architecture principles can be used to create deep learning systems. To investigate the questions formulated above, three data sets were created where different properties were varied. These properties were light conditions, ground material and dump truck orientation. The data sets were created using a toy dump truck together with a similarly sized wheel loader with a camera mounted on the roof of its cab. The first data set contained only indoor images where the dump truck was placed in different orientations but neither the light nor the ground material changed. The second data set contained images were the light source was kept constant, but the dump truck orientation and ground materials changed. The last data set contained images where all property were varied. The real time object detector YOLOv3 was used to examine how a real time object detector would perform depending on which one of the three data sets it was trained using. No matter the data set, it was possible to train a model to perform real time object detection. Using a Nvidia 980 TI the inference time of the model was around 22 ms, which is more than enough to be able to classify videos running at 30 fps. All three data sets converged to a training loss of around 0.10. The data set which contained more varied data, such as the data set where all properties were changed, performed considerably better reaching a validation loss of 0.164 compared to the indoor data set, containing the least varied data, only reached a validation loss of 0.257. The size of the data set was also a factor in the performance, however it was not as important as having varied data. The result also showed that all three data sets could reach a mAP score of around 0.98 using transfer learning.
73

Experiential Sampling For Object Detection In Video

Paresh, A 05 1900 (has links)
The problem of object detection deals with determining whether an instance of a given class of object is present or not. There are robust, supervised learning based algorithms available for object detection in an image. These image object detectors (image-based object detectors) use characteristics learnt from the training samples to find object and non-object regions. The characteristics used are such that the detectors work under a variety of conditions and hence are very robust. Object detection in video can be performed by using such a detector on each frame of the video sequence. This approach checks for presence of an object around each pixel, at different scales. Such a frame-based approach completely ignores the temporal continuity inherent in the video. The detector declares presence of the object independent of what has happened in the past frames. Also, various visual cues such as motion and color, which give hints about the location of the object, are not used. The current work is aimed at building a generic framework for using a supervised learning based image object detector for video that exploits temporal continuity and the presence of various visual cues. We use temporal continuity and visual cues to speed up the detection and improve detection accuracy by considering past detection results. We propose a generic framework, based on Experiential Sampling [1], which considers temporal continuity and visual cues to focus on a relevant subset of each frame. We determine some key positions in each frame, called attention samples, and object detection is performed only at scales with these positions as centers. These key positions are statistical samples from a density function that is estimated based on various visual cues, past experience and temporal continuity. This density estimation is modeled as a Bayesian Filtering problem and is carried out using Sequential Monte Carlo methods (also known as Particle Filtering), where a density is represented by a weighted sample set. The experiential sampling framework is inspired by Neisser’s perceptual cycle [2] and Itti-Koch’s static visual attention model[3]. In this work, we first use Basic Experiential Sampling as presented in[1]for object detection in video and show its limitations. To overcome these limitations, we extend the framework to effectively combine top-down and bottom-up visual attention phenomena. We use learning based detector’s response, which is a top-down cue, along with visual cues to improve attention estimate. To effectively handle multiple objects, we maintain a minimum number of attention samples per object. We propose to use motion as an alert cue to reduce the delay in detecting new objects entering the field of view. We use an inhibition map to avoid revisiting already attended regions. Finally, we improve detection accuracy by using a particle filter based detection scheme [4], also known as Track Before Detect (TBD). In this scheme, we compute likelihood of presence of the object based on current and past frame data. This likelihood is shown to be approximately equal to the product of average sample weights over past frames. Our framework results in a significant reduction in overall computation required by the object detector, with an improvement in accuracy while retaining its robustness. This enables the use of learning based image object detectors in real time video applications which otherwise are computationally expensive. We demonstrate the usefulness of this framework for frontal face detection in video. We use Viola-Jones’ frontal face detector[5] and color and motion visual cues. We show results for various cases such as sequences with single object, multiple objects, distracting background, moving camera, changing illumination, objects entering/exiting the frame, crossing objects, objects with pose variation and sequences with scene change. The main contributions of the thesis are i) We give an experiential sampling formulation for object detection in video. Many concepts like attention point and attention density which are vague in[1] are precisely defined. ii) We combine detector’s response along with visual cues to estimate attention. This is inspired by a combination of top-down and bottom-up attention maps in visual attention models. To the best of our knowledge, this is used for the first time for object detection in video. iii) In case of multiple objects, we highlight the problem with sample based density representation and solve by maintaining a minimum number of attention samples per object. iv) For objects first detected by the learning based detector, we propose to use a TBD scheme for their subsequent detections along with the learning based detector. This improves accuracy compared to using the learning based detector alone. This thesis is organized as follows . Chapter 1: In this chapter we present a brief survey of related work and define our problem. . Chapter 2: We present an overview of biological models that have motivated our work. . Chapter 3: We give the experiential sampling formulation as in previous work [1], show results and discuss its limitations. . Chapter 4: In this chapter, which is on Enhanced Experiential Sampling, we suggest enhancements to overcome limitations of basic experiential sampling. We propose track-before-detect scheme to improve detection accuracy. . Chapter 5: We conclude the thesis and give possible directions for future work in this area. . Appendix A: A description of video database used in this thesis. . Appendix B: A list of commonly used abbreviations and notations.
74

Detekce objektů na GPU / Object Detection on GPU

Macenauer, Pavel January 2015 (has links)
This thesis addresses the topic of object detection on graphics processing units. As a part of it, a system for object detection using NVIDIA CUDA was designed and implemented, allowing for realtime video object detection and bulk processing. Its contribution is mainly to study the options of NVIDIA CUDA technology and current graphics processing units for object detection acceleration. Also parallel algorithms for object detection are discussed and suggested.
75

Detekce objektů pomocí Houghovy transformace / Object Detection Using Hough Transform

Chroboczek, Martin January 2014 (has links)
This diploma thesis deals with object detection using mathematical technique called Hough transform. Hough transform technique is conceived in general terms from the de facto simplest use for the detection of elementary analytically describable shapes such as lines, ellipses, circles or simple analytically definable elements to sophisticated use for the detection of complex - analytically virtually indescribable - objects. These include cars or pedestrians who are detected on the basis of the photographic records of these objects and entities. The document thus maps the definition and use of the respective Hough transform subtechniques along with their basic classification on probabilistic and non-probabilistic methods. The work subsequently culminates in describing the general state-of-the-art technique called Class-Specific Hough Forests for Object Detection, introduces its definition, training procedure on a provided dataset and the detection of test patterns. In conclusion of this work,there is designed and implemented generally trainable object detector using this technique. And there is experimental evaluation of its quality.
76

Semi-Supervised Plant Leaf Detection and Stress Recognition / Semi-övervakad detektering av växtblad och möjlig stressigenkänning

Antal Csizmadia, Márk January 2022 (has links)
One of the main limitations of training deep learning-based object detection models is the availability of large amounts of data annotations. When annotations are scarce, semi-supervised learning provides frameworks to improve object detection performance by utilising unlabelled data. This is particularly useful in plant leaf detection and possible leaf stress recognition, where data annotations are expensive to obtain due to the need for specialised domain knowledge. This project aims to investigate the feasibility of the Unbiased Teacher, a semi-supervised object detection algorithm, for detecting plant leaves and recognising possible leaf stress in experimental settings where few annotations are available during training. We build an annotated data set for this task and implement the Unbiased Teacher algorithm. We optimise the Unbiased Teacher algorithm and compare its performance to that of a baseline model. Finally, we investigate which hyperparameters of the Unbiased Teacher algorithm most significantly affect its performance and its ability to utilise unlabelled images. We find that the Unbiased Teacher algorithm outperforms the baseline model in the experimental settings when limited annotated data are available during training. Amongst the hyperparameters we consider, we identify the confidence threshold as having the most effect on the algorithm’s performance and ability to leverage unlabelled data. Ultimately, we demonstrate the feasibility of improving object detection performance with the Unbiased Teacher algorithm in plant leaf detection and possible stress recognition when few annotations are available. The improved performance reduces the amount of annotated data required for this task, reducing annotation costs and thereby increasing usage for real-world tasks. / En av huvudbegränsningarna med att träna djupinlärningsbaserade objektdetekteringsmodeller är tillgången på stora mängder annoterad data. Vid små mängder av tillgänglig data kan semi-övervakad inlärning erbjuda ett ramverk för att förbättra objektdetekteringsprestanda genom att använda icke-annoterad data. Detta är särskilt användbart vid detektering av växtblad och möjlig igenkänning av stressymptom hos bladen, där kostnaden för annotering av data är hög på grund av behovet av specialiserad kunskap inom området. Detta projekt syftar till att undersöka genomförbarheten av Opartiska Läraren (eng. ”Unbiased Teacher”), en semi-övervakad objektdetekteringsalgoritm, för att upptäcka växtblad och känna igen möjliga stressymptom hos blad i experimentella miljöer när endast en liten mängd annoterad data finns tillgänglig under träning. För att åstadkomma detta bygger vi ett annoterat dataset och implementerar Opartiska Läraren. Vi optimerar Opartiska Läraren och jämför dess prestanda med en baslinjemodell. Slutligen undersöker vi de hyperparametrar som mest påverkar Opartiska Lärarens prestanda och dess förmåga att använda icke-annoterade bilder. Vi finner att Opartiska Läraren överträffar baslinjemodellen i de experimentella inställningarna när det finns en begränsad mängd annoterad data under träningen. Bland hyperparametrarna vi överväger identifierar vi konfidensgränsen som har störst effekt på algoritmens prestanda och dess förmåga att utnyttja icke-annoterad data. Vi demonstrerar möjligheten att förbättra objektdetekteringsprestandan med Opartiska Läraren i växtbladsdetektering och möjlig stressigenkänning när få anteckningar finns tillgängliga. Den förbättrade prestandan minskar mängden annoterad data som krävs, vilket minskar anteckningskostnaderna och ökar därmed användbarheten för användning inom mer praktiska områden.
77

Rotation Invariant Histogram Features for Object Detection and Tracking in Aerial Imagery

Mathew, Alex 05 June 2014 (has links)
No description available.
78

Transfer learning for object category detection

Aytar, Yusuf January 2014 (has links)
Object category detection, the task of determining if one or more instances of a category are present in an image with their corresponding locations, is one of the fundamental problems of computer vision. The task is very challenging because of the large variations in imaged object appearance, particularly due to the changes in viewpoint, illumination and intra-class variance. Although successful solutions exist for learning object category detectors, they require massive amounts of training data. Transfer learning builds upon previously acquired knowledge and thus reduces training requirements. The objective of this work is to develop and apply novel transfer learning techniques specific to the object category detection problem. This thesis proposes methods which not only address the challenges of performing transfer learning for object category detection such as finding relevant sources for transfer, handling aspect ratio mismatches and considering the geometric relations between the features; but also enable large scale object category detection by quickly learning from considerably fewer training samples and immediate evaluation of models on web scale data with the help of part-based indexing. Several novel transfer models are introduced such as: (a) rigid transfer for transferring knowledge between similar classes, (b) deformable transfer which tolerates small structural changes by deforming the source detector while performing the transfer, and (c) part level transfer particularly for the cases where full template transfer is not possible due to aspect ratio mismatches or not having adequately similar sources. Building upon the idea of using part-level transfer, instead of performing an exhaustive sliding window search, part-based indexing is proposed for efficient evaluation of templates enabling us to obtain immediate detection results in large scale image collections. Furthermore, easier and more robust optimization methods are developed with the help of feature maps defined between proposed transfer learning formulations and the “classical” SVM formulation.
79

Ground Object Recognition using Laser Radar Data : Geometric Fitting, Performance Analysis, and Applications

Grönwall, Christna January 2006 (has links)
This thesis concerns detection and recognition of ground object using data from laser radar systems. Typical ground objects are vehicles and land mines. For these objects, the orientation and articulation are unknown. The objects are placed in natural or urban areas where the background is unstructured and complex. The performance of laser radar systems is analyzed, to achieve models of the uncertainties in laser radar data. A ground object recognition method is presented. It handles general, noisy 3D point cloud data. The approach is based on the fact that man-made objects on a large scale can be considered be of rectangular shape or can be decomposed to a set of rectangles. Several approaches to rectangle fitting are presented and evaluated in Monte Carlo simulations. There are error-in-variables present and thus, geometric fitting is used. The objects can have parts that are subject to articulation. A modular least squares method with outlier rejection, that can handle articulated objects, is proposed. This method falls within the iterative closest point framework. Recognition when several similar models are available is discussed. The recognition method is applied in a query-based multi-sensor system. The system covers the process from sensor data to the user interface, i.e., from low level image processing to high level situation analysis. In object detection and recognition based on laser radar data, the range value’s accuracy is important. A general direct-detection laser radar system applicable for hard-target measurements is modeled. Three time-of-flight estimation algorithms are analyzed; peak detection, constant fraction detection, and matched filter. The statistical distribution of uncertainties in time-of-flight range estimations is determined. The detection performance for various shape conditions and signal-tonoise ratios are analyzed. Those results are used to model the properties of the range estimation error. The detector’s performances are compared with the Cramér-Rao lower bound. The performance of a tool for synthetic generation of scanning laser radar data is evaluated. In the measurement system model, it is possible to add several design parameters, which makes it possible to test an estimation scheme under different types of system design. A parametric method, based on measurement error regression, that estimates an object’s size and orientation is described. Validations of both the measurement system model and the measurement error model, with respect to the Cramér-Rao lower bound, are presented.
80

Konvoluční neuronové sítě a jejich využití při detekci objektů / Convolutional neural networks and their application in object detection

Hrinčár, Matej January 2013 (has links)
1 Title: Convolutional neural networks and their application in object detection Author: Matej Hrinčár Department: Department of Theoretical Computer Science and Mathematical Logic Supervisor: doc. RNDr. Iveta Mrázová, CSc. Supervisor's e-mail address: Iveta.Mrazova@mff.cuni.cz Abstract: Nowadays, it has become popular to enhance live sport streams with an augmented reality like adding various statistics over the hockey players. To do so, players must be automatically detected first. This thesis deals with such a challenging task. Our aim is to deliver not only a sufficient accuracy but also a speed because we should be able to make the detection in real time. We use one of the newer model of neural network which is a convolutional network. This model is suitable for proces- sing image data a can use input image without any preprocessing whatsoever. After our detailed analysis we choose this model as a detector for hockey players. We have tested several different architectures of the networks which we then compared and choose the one which is not only accurate but also fast enough. We have also tested the robustness of the network with noisy patterns. Finally we assigned detected pla- yers to their corresponding teams utilizing K-mean algorithm using the information about their jersey color. Keywords:...

Page generated in 0.035 seconds