Spelling suggestions: "subject:"[een] ON GRID"" "subject:"[enn] ON GRID""
81 |
Off grid eller energiplushus. : Är det möjligt att gå off grid?Dahlbom, Roland January 2020 (has links)
Målet med den här undersökningen har varit att se om fastigheten Orkestern 1 går att koppla off-grid och om det är ekonomiskt försvarbart eller om en on-grid lösning är bättre. Förutsättningarna är goda med ett stort tak med plats för solpaneler i öst-västlig riktning och en årsmedelvind på 4 m/s. Då huset är nybyggt och välisolerat är även energiförbrukning låg. För att kunna beräkna hur mycket energi som ska produceras i form av värme och el med hjälp av solceller, vindkraftverk, pelletskamin och dieselverk upprättas en energibalans och energifördelning med hjälp av transmission och ventilationsberäkningar. Lagring av energi görs i form av pellets, batteri och biodiesel. Simuleringsprogrammet för solceller Polysun används för att beräkna produktion av solel över varje månad på året. Diagram upprättas över året indelat i månader där det framgår hur stort energibehovet är och visar hur stor del varje energiproducent har varje månad. En pay-off kalkyl görs för att se om det är ekonomiskt lönsamt och för att kunna jämföra mellan två olika off-grid system. Pay-off kalkylen används också för att jämföra mellan off-grid och on-grid system. Resultatet landar i att on-grid systemet är ekonomiskt hållbart medan off-grid systemet inte är det men är ändå fullt genomförbart. / The main target of this examination has been to see if the real estate Orkestern 1 has the possibility to go off-grid and if it is economical defendable or if on-grid solution is a better way to go. The prerequisites are good with a large roof to place solar panels to the east and west, a yearly average windspeed at 4 m/s and a low energy consumption because the house is new built and well insulated. To calculate how much energy that must be produced in form of heat and electricity with solar cells, windmills, pellet stove and diesel generator an energy balance and an energy distribution will be prepared with help of calculations of transmission and ventilation loses. Storage of energy will be done in form of pellets, battery and biodiesel. The simulation program for solar panels Polysun is used to calculate the produced solar energy for each month on the year. Diagram is prepared for each month to see the need of energy and how much every energy producer is delivering. A straight pay-off calculation is done to see if there are any economic benefits and to compare between off-grid and on-grid systems. The result will be that on-grid system is better economical but still the off-grid system is doable.
|
82 |
Thermal Analysis and Response of Grid-Stiffened Composite PanelsUzman, Burak Jr. 26 January 1998 (has links)
A study aimed at determining the thermal deformation response and thermal buckling loads of rectangular grid-stiffened composite panels is presented. Two edge conditions are considered for the panel, one in which all panel edges are free to deform, and another when all the edges are restrained.
In the first case panel deformations due to a uniformly distributed thermal load are analyzed. In the latter case, thermal loads causing buckling failure due to the suppressed in-plane deformations are determined.
The panel is composed of a skin and a network of stiffeners, which are all made of the same graphite-epoxy composite material. Kirchhoff's Theory is used to determine the pre-buckling deformations and load distributions of the composite laminates for a panel with free to deform edges. To illustrate both the in-plane and out-of-plane deformations of plate structures under uniform thermal loads, two thermal coefficient vectors, thermal expansion and thermal bending coefficient vectors are introduced.
Linear panel buckling analysis performed by assuming a linear undeformed prebuckling state. Rayleigh-Ritz Method, which utilizes minimization of the total energy of a structure to determine the buckling loads, is used to govern the buckling analysis of composite laminates forming the panel. Lagrange Multiplier Method is used along with the Rayleigh-Ritz Method to enforce the deformation continuity constraints at discrete locations along the skin and stiffener interface.
As a result, graphical and numerical presentations of the effects of skin and stiffener laminate stacking sequences on the thermal deformations and on the thermal buckling load of the grid-stiffened panel are given. / Master of Science
|
83 |
Cybersecurity of Energy Hubs in Smart GridsPazouki, Samaneh 01 December 2023 (has links) (PDF)
Smart grid is about integration of distributed energy resources (DERs) into the energy systems, especially electricity grid. DERs include renewable energy resources such as wind and solar, energy storages such as electrical and thermal energy storage, demand response programs, smart homes, and electric vehicles with their charging stations. DERs have significant advantages such as reduction of operation costs, emission, and peak as well as the increase of reliability, resiliency, stability, and voltage profile in smart grids. They also prevent establishment of fossil fuel power plants and expansion of transmission lines by locating in electricity distribution grid and transmission lines. The advantages approve the financial, technical, and environmental effects of the DERs in smart grids. An operation/planning approach such as EHs/IEHs is required to utilization of DERs in the Smart Grid. EH is a super node in electricity power system which connects different energy networks such as gas, electricity, heating, or cooling. The EH can be developed by DERs for operation and planning purposes. The EHs can be located in different parts of the energy networks to form IEHs. Despite the significant advantages of utilization of DERs in EHs of Smart Grids, they should be utilized by information and communication technologies (ICTs), which results in Cyber-Physical Power Systems (CPPSs) vulnerable to different cyberattacks. The vulnerability of DERs in EHs of Smart Grid leads to jeopardizing the reliability, stability, and resiliency of power systems since integrity, confidentiality, or availability cyberattacks might bypass the detection systems to take control of DERs for malicious purposes such as congestion, cascading failure, blackout, undervoltage/overvoltage, or costs. In this research, some cyberattacks are modeled on DERs in EHs and IEHs of Smart Grid, and the vulnerabilities of DERs to the cyberattacks in the developed EHs/IEs are approved: First, an integrity cyberattack is modeled and applied to the DR program (time/incentive-based) in the developed EH in electricity distribution grid in order to control the performance of the EH and its negative effects on the grid. The attacker aims to manipulate the system by both raising peak demand and lowering customers' energy bills simultaneously. This strategy is designed to deceive customers into participating in falsified Demand Response (DR) programs, ultimately leading to an increase in the overall peak demands of the system which jeopardizes the reliability of the system. Second, an integrity FDI cyberattack is modeled and applied on the developed IEHs in transmission lines in order to control the performance of the IEH and its negative effects on the transmission lines. This cyberattack is modeled to manipulate the transmission lines energy demands in order to threaten reliability and stability of the system by bypassing detection systems. Finally, the attacker targets the developed EHs integrated by DERs by maximizing the costs associated with operation, emission, and energy not supplied costs. The attacker objective is to adversely affect the financial, technical, and environmental advantages of integration of DERs to the system. Hence, powerful remedial actions are required to alleviate the adverse effects of DERs, manipulated by attackers, in the developed EHs. Therefore, a remedial action is designed by min-max formulation in order to mitigate the adverse effects of DERs on financial, technical, and environmental terms. The remedial action reduces the imposed costs by changing the status of EH devices. The results highlight the role of DERs in reducing costs and emphasize the need for their proactive security measures in cyber-physical power systems.
|
84 |
Unsteady Incompressible Flow Analysis Using C-Type Grid with a Curved Branch CutFang, Kuan-Chieh January 2000 (has links)
No description available.
|
85 |
An analysis of the personal constructs of beginning swimmers using the repertory grid /Lerch, Harold A. January 1968 (has links)
No description available.
|
86 |
An Urban Graduate CenterUbben, Carolyn Wilson 22 October 1999 (has links)
The Urban Graduate Center is an academic village for graduate studies in an urban setting. The project seeks to establish a campus setting for students and professors who will primarily attend the Graduate Center on evenings and weekends. The Graduate Center seeks to extend the fabric of the existing urban area into an abandoned railroad yard site. The project involves a building complex the approximate size of a small city block. The building complex includes places for learning, places for meeting, and places for contemplation.
The project offers the opportunity to investigate the process of designing architecture. While the project relates to needs of particular users the discoveries and methods of meeting these needs can be applied to many different forms of architecture. The various functions that will occur in the urban graduate center provide the chance to investigate issues of organization, scale, transitions, and details. / Master of Architecture
|
87 |
At The Water's Edge: The Grid in Coastal ConstructionWaltz, Christopher S. 18 January 2000 (has links)
The Outer Banks are a special place at the end of land and the beginning of water, and yet, most of the houses built on these islands seem to take no notice. A drive down the beach road reveals house after house that are essentially suburban dwellings raised above flood level on piles. This project proposes that oceanfront homes should not be pale imitations of inland housing, but rather as unique as the environment in which they exist. The architect must design for the long term needs of the client and use elements dictated by the environment as integral parts of the design to create a building that is both responsive to and reflective of the condition that occurs at the water's edge. / Master of Architecture
|
88 |
A framework for evolving grid computing systemsAlfawair, Mai January 2009 (has links)
Grid computing was born in the 1990s, when researchers were looking for a way to share expensive computing resources and experiment equipment. Grid computing is becoming increasingly popular because it promotes the sharing of distributed resources that may be heterogeneous in nature, and it enables scientists and engineering professionals to solve large scale computing problems. In reality, there are already huge numbers of grid computing facilities distributed around the world, each one having been created to serve a particular group of scientists such as weather forecasters, or a group of users such as stock markets. However, the need to extend the functionalities of current grid systems lends itself to the consideration of grid evolution. This allows the combination of many disjunct grids into a single powerful grid that can operate as one vast computational resource, as well as for grid environments to be flexible, to be able to change and to evolve. The rationale for grid evolution is the current rapid and increasing advances in both software and hardware. Evolution means adding or removing capabilities. This research defines grid evolution as adding new functions and/or equipment and removing unusable resources that affect the performance of some nodes. This thesis produces a new technique for grid evolution, allowing it to be seamless and to operate at run time. Within grid computing, evolution is an integration of software and hardware and can be of two distinct types, external and internal. Internal evolution occurs inside the grid boundary by migrating special resources such as application software from node to node inside the grid. While external evolution occurs between grids. This thesis develops a framework for grid evolution that insulates users from the complexities of grids. This framework has at its core a resource broker together with a grid monitor to cope with internal and external evolution, advance reservation, fault tolerance, the monitoring of the grid environment, increased resource utilisation and the high availability of grid resources. The starting point for the present framework of grid evolution is when the grid receives a job whose requirements do not exist on the required node which triggers grid evolution. If the grid has all the requirements scattered across its nodes, internal evolution enabling the grid to migrate the required resources to the required node in order to satisfy job requirements ensues, but if the grid does not have these resources, external evolution enables the grid either to collect them from other grids (permanent evolution) or to send the job to other grids for execution (just in time) evolution. Finally a simulation tool called (EVOSim) has been designed, developed and tested. It is written in Oracle 10g and has been used for the creation of four grids, each of which has a different setup including different nodes, application software, data and polices. Experiments were done by submitting jobs to the grid at run time, and then comparing the results and analysing the performance of those grids that use the approach of evolution with those that do not. The results of these experiments have demonstrated that these features significantly improve the performance of grid environments and provide excellent scheduling results, with a decreasing number of rejected jobs.
|
89 |
Synthetic Modeling of Power Grids Based on Statistical AnalysisElyas, Seyyed Hamid, 8045266 01 January 2017 (has links)
The development of new concepts and methods for improving the efficiency of power networks needs performance evaluation with realistic grid topology. However, much of the realistic grid data needed by researchers cannot be shared publicly due to the security and privacy challenges. With this in mind, power researchers studied statistical properties of power grids and introduced synthetic power grid topology as appropriate methodology to provide enough realistic power grid case studies. If the synthetic networks are truly representative and if the concepts or methods test well in this environment they would test well on any instance of such a network as the IEEE model systems or other existing grid models.
In the past, power researchers proposed a synthetic grid model, called RT-nested-smallworld, based on the findings from a comprehensive study of the topology properties of a number of realistic grids. This model can be used to produce a sufficiently large number of power grid test cases with scalable network size featuring the same kind of small-world topology and electrical characteristics found in realistic grids. However, in the proposed RT-nested-smallworld model the approaches to address some electrical and topological settings such as (1) bus types assignment, (2) generation and load settings, and (3) transmission line capacity assignments, are not sufficient enough to apply to realistic simulations. In fact, such drawbacks may possibly cause deviation in the grid settings therefore give misleading results in the following evaluation and analysis.
To address this challenges, the first part of this thesis proposes a statistical methodology to solve the bus type assignment problem. This method includes a novel measure, called the Bus Type Entropy, the derivation of scaling property, and the optimized search algorithm. The second part of this work includes a comprehensive study on generation/Load settings based on both topology metrics and electrical characteristics. In this section a set of approaches has been developed to generate a statistically correct random set of generation capacities and assign them to the generation buses in a grid. Then we determine the generation dispatch of each generation unit according to its capacity and the dispatch ratio statistics, which we collected and derived from a number of realistic grid test cases. The proposed approaches is readily applied to determining the load settings in a synthetic grid model and to studying the statistics of the flow distribution and to estimating the transmission constraint settings. Considering the results from the first two sections, the third part of this thesis will expand earlier works on the RT-nested-smallworld model and develop a new methodology to appropriately characterize the line capacity assignment and improve the synthetic power grid modeling.
|
90 |
Early Dual Grid Voltage Integrity VerificationAvci, Mehmet 14 December 2010 (has links)
As part of power distribution network verification, one should check if the voltage fluctuations exceed some critical threshold. The traditional simulation-based solution to this problem is intractable due to the large number of possible circuit behaviors. This approach also requires full knowledge of the details of the underlying circuitry, not allowing one to verify the power distribution network early in the design flow. In this work, we consider the power and ground grids together (i.e. dual grid) and formulate the problem of computing the worst-case voltage fluctuations of the dual grid under the framework of current constraints. Then, we present a solution technique in which tight lower and upper bounds on worst-case voltage fluctuations are computed via linear programs. Experimental results indicate that the proposed technique results in errors in the range of a few mV . We also present extensions to single grid (i.e. only power grid) verification techniques.
|
Page generated in 0.0409 seconds