• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Separate adjustment of close range photogrammetric measurements

Wang, Xinchi January 1998 (has links)
No description available.
2

Evaluation of material surface profiling methods : contact versus non-contact

Jaturunruangsri, Supaporn January 2015 (has links)
Accurate determination of surface texture is essential for the manufacturing of mechanical components within design specifications in engineering and materials science disciplines. It is also required for any subsequent modifications to physical properties and functional aspects of the object. A number of methods are available to characterize any surface through the measurement of roughness parameters that can then be used to describe surface texture. These methods may be divided into those in that direct contact is made with the surface and those where such contact is not required. This report describes two methods approach for the surface profiling of a quartz glass substrate for step height, and tungsten substrate for roughness measure. A stylus profilometer (contact method) and vertical scanning interferometer, (VSI) or (non-contact optical method) were used for step height and roughness parameter measurements. A comparison was made with nominal values assigned to the studied surface, and conclusions drawn about the relative merits of the two methods. Those merits were found to differ, depending on the parameters under consideration. The stylus method gave better agreement of step height values for dimensions greater than a micron. Both methods showed excellent accuracy at smaller dimensions. Both methods also provided accurate average roughness values, although the VSI data significantly overestimated 35% above the peak-to-valley parameter. Likely sources and nature of such differences are discussed based on the results presented, as well as on the previous comparison studies reported in the literature. Because of such method-specific differences, the multi-technique approach used in this work for accurate surface profiling appears to be a more rational option than reliance upon a single method. Both contact and non-contact approaches have problems with specific roughness parameters, but a hybrid approach offers the possibility of combining the strengths of both methods and eliminating their individual weaknesses.
3

Development of Hartmann Screen Test for Measurement of Stress during Thin Film Deposition

Forouzandeh, Farhad, s2007552@student.rmit.edu.au 2008 June 1930 (has links)
The Hartmann screen test (HST) is a well-known technique that has been used for many years in optical metrology. This thesis describes how the technique has been adapted to create a system for continuous in situ monitoring of the internal stress in thin films during plasma deposition. Stress is almost always present in thin films. Stress can affect the physical properties of film, and also influence phenomena which are important in the technology of thin film manufacture such as adhesion and crystallographic defects. For these reasons, it is very important to control and manage the film stress during manufacture of devices based on thin films. The commonest way to infer stress is to measure the change in substrate curvature that it produces. This is often done by comparison of substrate curvatures before and after deposition with surface profilometry, or interferometry. However, these methods are unsuitable for implementing during film deposition in the vacuum chamber. A novel method for measuring changes in curvature of the thin film substrate in situ has been developed, making use of the HST. An expanded laser beam is passed through a screen containing a number of small apertures, which breaks it up into several rays. After reflecting from the surface of the thin film wafer, the rays are received on an array detector as a spot pattern. Image processing is performed on the recorded spot images to determine the positions of spots accurately. Spot centre positions are recorded at start of deposition as a reference, then their displacement is tracked with time during deposition. The spot deflections are fitted to a theoretical model, in which the change in sample profile is described by a second-order surface. The principal axes of curvature of this surface and their orientation are obtained by a least-squares fitting procedure. From this, the thin film stress can be inferred and monitored in real time. Equipment using this technique has been designed and developed in prototype form for eventual use in the RMIT cathodic arc deposition facility. First experiments with a classic Hartmann screen configuration proved that the technique gave good results, but precision was limited by diffraction and interference effects in the recorded image which made determination of spot centres more difficult. A modified configuration was developed, in which a camera is focused on the Hartmann screen, giving much sharper spot patterns and improved resolution. Tests on the prototype system and comparison with other techniques have shown that it is possible to determine changes in sample curvature with a precision of approximately 0.01 m-1. This corresponds to stress changes of around 0.5 GPa for typical wafer and film thicknesses used in practice. The Hartmann screen test is straightforward to use and to interpret. Image processing and analysis of the recorded spot patterns can be automated and performed continuously in real time during thin film deposition. The system promises to be very useful for monitoring stress and thus controlling the deposition process for improved quality of thin film manufacture.
4

Manufacturing of super-polished large aspheric/freeform optics

Kim, Dae Wook, Oh, Chang-jin, Lowman, Andrew, Smith, Greg A., Aftab, Maham, Burge, James H. 22 July 2016 (has links)
Several next generation astronomical telescopes or large optical systems utilize aspheric/freeform optics for creating a segmented optical system. Multiple mirrors can be combined to form a larger optical surface or used as a single surface to avoid obscurations. In this paper, we demonstrate a specific case of the Daniel K. Inouye Solar Telescope (DKIST). This optic is a 4.2 m in diameter off-axis primary mirror using ZERODUR thin substrate, and has been successfully completed in the Optical Engineering and Fabrication Facility (OEFF) at the University of Arizona, in 2016. As the telescope looks at the brightest object in the sky, our own Sun, the primary mirror surface quality meets extreme specifications covering a wide range of spatial frequency errors. In manufacturing the DKIST mirror, metrology systems have been studied, developed and applied to measure low-to-mid-to-high spatial frequency surface shape information in the 4.2 m super-polished optical surface. In this paper, measurements from these systems are converted to Power Spectral Density (PSD) plots and combined in the spatial frequency domain. Results cover 5 orders of magnitude in spatial frequencies and meet or exceed specifications for this large aspheric mirror. Precision manufacturing of the super-polished DKIST mirror enables a new level of solar science.
5

Speckle-reduction using the bidimensional empirical mode decomposition for fringe analysis

Chen, Ting-wei 31 August 2011 (has links)
Phase-extraction from fringe patterns is an inevitable procedure in the field of optical metrology and interferometry. However, speckle noise will introduce and influence the precision of wrapped phase map when a coherent light is used. In this thesis, we use the bidimensional empirical mode decomposition (BEMD) to perform the speckle-reduction. Moreover, different interpolation method in BEMD will be used to compare their performance in speckle-reduction. Finally, the database will be developed to make the BEMD a robotic tool to reduce noises. And the database also points out that the performance of BEMD is highly related to the fringe period, the fringe visibility, and the SNR of speckle noise.
6

Inspection to 3-D deformation of a dynamic object using fringe projection techniques

Ko, Wei-Ting 18 July 2012 (has links)
A projected fringe profilometry (PFP) is a wide optical measurement technology to gauge the three dimensional appearance of object.Because of non-contact type , the short retrieve time and low environmental effect,PFP was usually used in many fields.PFP has become rather efficient and precise on gauging the three dimensional appearance of the static obiect because of its persistent development in recent years.However,it is still not mature yet to gauge the dynamic object. If we could develop a gauging way in the dynamic object , the application would be more widespread. First of all,using PFP as the gauging principle and utilzing the math algorithm for analyzing the changes between the dynamic measured object and the blurred fringes.Secondly,reconstructed the inspected object's three dimensional appearance and the velocity. Finally,found out the deformation of the measured object. The technology of this thesis broke through the typical measurement of velocity.We could analyze the velocities of three dimentional dirtions by only single optic imformation.
7

Application of laser tracker technology for measuring optical surfaces

Zobrist, Tom L. January 2009 (has links)
The pages of this dissertation detail the development of an advanced metrology instrument for measuring large optical surfaces. The system is designed to accurately guide the fabrication of the Giant Magellan Telescope and future telescopes through loose-abrasive grinding. The instrument couples a commercial laser tracker with an advanced calibration technique and a set of external references to mitigate a number of error sources. The system is also required to work as a verification test for the GMT principal optical interferometric test of the polished mirror segment to corroborate the measurements in several low-order aberrations. A set of system performance goals were developed to ensure that the system will achieve these purposes. The design, analysis, calibration results, and measurement performance of the Laser Tracker Plus system are presented in this dissertation.
8

Temperature dependence of the dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 1.0–8.5 eV

Sturm, Chris, Schmidt-Grund, Rüdiger, Zviagin, Vitaly, Grundmann, Marius 07 August 2018 (has links)
The full dielectric tensor of monoclinic Ga2O3 (β-phase) was determined by generalized spectroscopic ellipsometry in the spectral range from 1.0 eV up to 8.5 eV and temperatures in the range from 10K up to 300K. By using the oriented dipole approach, the energies and broadenings of the excitonic transitions are determined as a function of the temperature, and the exciton-phonon coupling properties are deduced.
9

External Cavity Mode-locked Semiconductor Lasers For The Generation Of Ultra-low Noise Multi-gigahertz Frequency Combs And Applications In Multi-heterodyne Detection Of Arbitrary Optical Waveforms

Davila-Rodriguez, Josue 01 January 2013 (has links)
The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-Pérot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of
10

Absolute surface topography measurement with polarisation sensitive coherence scanning interferometry

Palodhi, Kanik January 2013 (has links)
Traditionally, surface topography measurement was in the domain of quality control of engineering parts. With the advancement of manufacturing technology and affordable computational costs, different types of surfaces are produced with varied shapes and surface textures. These pose significant measurement problems, therefore, surface topography research is gaining momentum to achieve a better control of the surface. Coherence scanning interferometry (CSI) is one of the most common techniques used for measurement of surface topography. It is preferred over tactile and other non-contact techniques since it provides fast and accurate measurement with high vertical (~ 1 nm) and lateral (~1 μm) resolutions over larger areas without any damage to the surface. Essentially, CSI is treated as one dimensional (1D) superposition of the light waves from an object and a reference that generates a three dimensional (3D) interferogram. Secondly, despite the advantages, there is no standard configuration of CSI that can provide absolute surface topography measurement of an engineering part with multiple materials. An effective solution to this problem will be particularly useful in the field of semiconductor and bio-related industries where chips and instruments are made of many materials. In this Thesis, first, the CSI technique is analysed in terms of a wider theoretical framework of 3D linear filtering technique which shows the similarities among other seemingly disparate techniques such as confocal and optical coherence tomography. Due consideration to the spectral characteristic of the source and the effect of numerical aperture are given and important parameters such as vertical and lateral resolutions are computed to compare this theory with standard analysis methods. Additionally, it is shown that the 3D fringe pattern can be considered to be a superposition of a reference field and the scattered field from the top foil-like layer on the top the object. The scattered field from this foil object is dependent on the normal Fresnel reflection coefficients. Therefore, it explains the phase offset and the proportional height offset introduced by different materials, especially, metals. In an object, where multiple materials are present, each material introduces different phase to the fringe pattern and therefore, the surface topography of the entire object is altered. To overcome this problem, the optical polarising properties of the material are exploited. A novel configuration of polarisation sensitive CSI is presented where interferograms with orthogonal circular polarisations are recorded and analysed. The configuration, initially, needs to be calibrated with a material and after that at each point on the object, the refractive index and height offset can be calculated. Therefore, it can be dually used to identify unknown materials present on the object and also to compensate for the height offset introduced by each material to produce absolute surface topography of the entire object. The configuration provides good agreement with ellipsometric results for metals. Additionally, it retains the advantages of high vertical and lateral resolution same as other standard coherence scanning interferometers.

Page generated in 0.0475 seconds