Spelling suggestions: "subject:"[een] POWER SYSTEM"" "subject:"[enn] POWER SYSTEM""
31 |
Generalized dynamic phasor-based simulation for power systemsKulasza, Matthew 13 January 2015 (has links)
This thesis presents a new general purpose power system simulation technique based on dynamic phasors and conventional power system simulation methods. The method developed in this work converts time-domain circuits to equivalent dynamic phasor representations. These dynamic phasor equivalents are then simulated using nodal analysis and numerical integrator substitution. Simple linear circuit models are presented first in order to demonstrate that the new method is capable of accurately simulating small systems. The method developed in this work is then expanded to include control systems, power electronic converters, and synchronous machines. Visual comparisons with simulation results obtained using time-domain electromagnetic transient simulators demonstrate that the new dynamic phasor-based technique is capable of accurately simulating power system components.
|
32 |
Economic scheduling in electric power systems : a mathematical model for the U.A.EAl-Gobaisi, Darwish M. K. F. January 1988 (has links)
No description available.
|
33 |
Auto-retuning of power system stabilizers for dynamic stability improvement /Cheung, Yuk-kin. January 1995 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1995. / Includes bibliographical references (leaves 108-111).
|
34 |
Impacts of superconducting magnetic energy storage unit on power system stability /Zheng, David Z., January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 81-83). Also available via the Internet.
|
35 |
Software Architecture Considerations for Facilitating Electric Power System Planning Incorporating a Variety of Design CategoriesWoyak, Jeremy 10 April 2012 (has links)
This work investigates some of the features of existing software applications for electric power system planning as well as some of the limitations that keep these applications from being more frequently used in distribution planning. This work presents a software framework that could facilitate much greater use of a wide variety of planning applications.
An integrated system model (ISM) provides a centralized approach to storing data for access by other planning applications. Additionally, an integrated performance simulator (IPS) facilitates comparing the design projects generated by those various planning applications across many criteria under various load growth scenarios. Furthermore, the IPS can automatically run any number of validation routines on a given design or set of designs, alerting the planning engineer of additional, unanticipated planning needs.
This paper provides three case studies which demonstrate the kinds of detailed evaluation and visualization of trade-offs that an IPS could facilitate. The case studies further highlight the greater levels of detail that may be utilized by the ISM and IPS in analyzing any set of modular designs and load growth scenarios. / Master of Science
|
36 |
Synchrophasor-Only Dynamic State Estimation & Data ConditioningJones, Kevin David 30 August 2013 (has links)
A phasor-only estimator carries with it intrinsic improvements over its SCADA analogue with respect to performance and reliability. However, insuring the quality of the data stream which leaves the linear estimator is crucial to establishing it as the front end of an EMS system and network applications which employ synchrophasor data. This can be accomplished using a two-fold solution: the pre-processing of phasor data before it arrives at the linear estimator and the by developing a synchrophasor-only dynamic state estimator as a mechanism for bad data detection and identification. In order to realize these algorithms, this dissertation develops a computationally simple model of the dynamics of the power system which fits neatly into the existing linear state estimation formulation. The algorithms are then tested on field data from PMUs installed on the Dominion Virginia Power EHV network. / Ph. D.
|
37 |
Modeling, Control and Stability Analysis of a PEBB Based DC Distribution Power SystemThandi, Gurjit Singh 24 June 1997 (has links)
Power Electronic Building Block (PEBB) concept is to provide generic building blocks for power conversion, regulation and distribution with control intelligence and autonomy. A comprehensive modeling and analysis of a PEBB based DC distributed power system (DPS), comprising of a front end power factor correction (PFC) boost rectifier, a DC-DC converter and a three phase four leg inverter is performed. All the sub-systems of the DC DPS are modeled and analyzed for stability and good transient performance.
A comprehensive stability analysis of a PEBB based DC DPS is performed. The effect of impedance overlap on the system and individual sub-systems is examined. Ability of a PEBB based converter to stabilize the integrated system by actively changing the system bandwidth is presented. The fault tolerance capability in a PEBB based rectifier is established by ensuring stable system operation, with one leg of the rectifier failed open-circuited. / Master of Science
|
38 |
A Novel Approach for Tuning of Power System Stabilizer Using Genetic AlgorithmSingh, Ravindra 07 1900 (has links)
The problem of dynamic stability of power system has challenged power system engineers since over three decades now. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system, which exhibits an oscillatory behaviour around the equilibrium state, following any disturbance, such as sudden change in loads, change in transmission line parameters, fluctuations in the output of turbine and faults etc. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of low frequency oscillations. The oscillations, which are typically in the frequency range of 0.2 to 3.0 Hz, might be excited by the disturbances in the system or, in some cases, might even build up spontaneously. These oscillations limit the power transmission capability of a network and, sometimes, even cause a loss of synchronism and an eventual breakdown of the entire system.
The application of Power System Stabilizer (PSS) can help in damping out these oscillations and improve the system stability. The traditional and till date the most popular solution to this problem is application of conventional power system stabilizer (CPSS). However, continual changes in the operating condition and network parameters result in corresponding change in system dynamics. This constantly changing nature of power system makes the design of CPSS a difficult task.
Adaptive control methods have been applied to overcome this problem with some degree of success. However, the complications involved in implementing such controllers have restricted their practical usage.
In recent years there has been a growing interest in robust stabilization and disturbance attenuation problem. H∞ control theory provides a powerful tool to deal with robust stabilization and disturbance attenuation problem. However the standard H∞ control theory does not guarantee robust performance under the presence of all the uncertainties in the power plants.
This thesis provides a method for designing fixed parameter controller for system to ensure robustness under model uncertainties. Minimum performance required of PSS is decided a priori and achieved over the entire range of operating conditions.
A new method has been proposed for tuning the parameters of a fixed gain power system stabilizer. The stabilizer places the troublesome system modes in an acceptable region in the complex plane and guarantees a robust performance over a wide range of operating conditions. Robust D-stability is taken as primary specification for design. Conventional lead/lag PSS structure is retained but its parameters are re-tuned using genetic algorithm (GA) to obtain enhanced performance. The advantage of GA technique for tuning the PSS parameters is that it is independent of the complexity of the performance index considered. It suffices to specify an appropriate objective function and to place finite bounds on the optimized parameters. The efficacy of the proposed method has been tested on single machine as well as multimachine systems. The proposed method of tuning the PSS is an attractive alternative to conventional fixed gain stabilizer design as it retains the simplicity of the conventional PSS and still guarantees a robust acceptable performance over a wide range of operating and system condition.
The method suggested in this thesis can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants.
|
39 |
Security Improvement of Power System via Resilience-oriented Planning and OperationLai, Kexing 06 November 2019 (has links)
No description available.
|
40 |
Development of an equivalent circuit of a large power system for real- time security assessmentWijeweera, Don Gayan Prabath 14 November 2016 (has links)
More and more system operators are interested in calculating transfer capability in real-time using real-time power flow models generated from the Energy Management System (EMS). However, compared to off-line study models, EMS models usually cover only a limited portion of the interconnected system. In most situations, it is not practical to extend the EMS model to capture the impact of the external systems and therefore using an equivalent network becomes necessary.
The development of equivalent circuits to represent external areas was a topic discussed over the last 50 years. Almost all of these methods require impedance information about the external area to develop the equivalent circuit. Unfortunately utilities do not have the external impedance information in the real-time. Therefore, normal industry practice is to use off-line studies to develop an equivalent circuit and use that circuit in the real-time operation without any validation. This can result in errors in the security assessment. Therefore, power industry need a method to develop or validate an equivalent circuit based on the available real-time information. This thesis work is focussed on meeting that industry need.
The work on this thesis presents two new methods that can be used to generate an equivalent circuit based on the boundary conditions. This method involves calculating equivalent impedance between two areas based on the boundary stations voltages, voltage angles and power leaving the boundary stations into external areas.
This thesis uses power system simulation between two areas to change the system condition to obtain different boundary bus voltages, voltage angles and power injections to generate necessary data. Regression analysis and least square method is then used to generate the equivalent circuit using these data. It is expected that system changes will provide necessary information in the real-time to generate the equivalent circuit.
The proposed methodology is validated with modified three area 300 bus system as well as using Manitoba Hydro’s system. Contingency analysis, transfer level calcula-tion and PV curves analysis is used to validate the proposed method. Simulation results show that the proposed method produces adequate accuracy in comparison with detailed off-line system models.
The main advantage of the proposed method as compared to other existing meth-ods such as Ward and REI is that the proposed method does not require external imped-ance information to generate the equivalent circuit. The ability to generate reasonably good equivalent circuit only using available boundary information will help utilities to generate or validate the equivalent circuit based on the current system conditions, which will intern help improve the accuracy of the security assessment / February 2017
|
Page generated in 0.0561 seconds