• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 15
  • 10
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Codigos convolucionais quanticos concatenados

Almeida, Antonio Carlos Aido de 14 October 2004 (has links)
Orientador : Reginaldo Palazzo Junior / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T00:27:05Z (GMT). No. of bitstreams: 1 Almeida_AntonioCarlosAidode_D.pdf: 2149041 bytes, checksum: 427f77a8e0ec2774c7b152dd209ba9fa (MD5) Previous issue date: 2004 / Resumo: A decoerencia é um dos maiores desafios obstrutivos da computação quantica. Os codigos corretores de erros quanticos tem sido desenvolvidos com o intuito de enfrentar este desafio. Uma estrutura de grupos e uma classe associada de codigos, a classe dos codigos estabilizadores, tem-se mostrado uteis na produção de codigos e no entendimento da estrutura de classes de codigos. Todos os codigos estabilizadores descobertos ate o momentos são codigos de bloco. Nesta tese, construiremos uma classe de codigos convolucional quanticos concatenados. Introduziremos o conceito de memoria convolucional quantica e algumas tecnicas simples para produzir bons codigos convolucionais quanticos a partir de classes de codigos concolucionais classicos / Abstract: Decoherence is one of the major challenges facing the field of quantum computation. The field of quantum error correction has developed to meet this challenge. A group-theoretical structure and associated class of quantum codes, the stabilizer codes, has proved particularly fruitful in producing codes and in understanding the structure of both specified codes and class of codes. All stabilizer codes discovered so far are block codes. In this thesis we will construct a class of concatenated quantum convolutional codes. We will introduce the concept of quantum convolutional memory and some simple techniques to produce good quantum convolutional codes from classes of classical convolutional codes / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
22

Threshold theorem for a quantum memory in a correlated environment : Teorema do limiar para uma memória quântica em um ambiente correlacionado / Teorema do limiar para uma memória quântica em um ambiente correlacionado

López Delgado, Daniel Antonio, 1987- 15 December 2016 (has links)
Orientadores: Amir Ordacgi Caldeira, Eduardo Peres Novais de Sá / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-01T01:58:28Z (GMT). No. of bitstreams: 1 LopezDelgado_DanielAntonio_D.pdf: 831710 bytes, checksum: 17fbe60b2052b9d8534b963d0e85fe0e (MD5) Previous issue date: 2016 / Resumo: A criação de um computador quântico é um projeto que guia, ao mesmo tempo, avanços tecnológicos e um melhor entendimento das propriedades de sistemas quânticos e da Mecânica Quântica em geral. O teorema do limiar é derivado da teoria quântica de correção de erros e garante que, se o ruido estocástico que afeta os componentes de um computador quântico encontra-se abaixo de um valor limite, podemos operar esse computador quântico confiavelmente. Investigamos como esse teorema é modificado quando consideramos uma memória quântica (a qual usa o código de superfície para corrigir erros) acoplada a um ambiente correlacionado. O limiar de erros nesse caso é relacionado à transição de fase ordem-desordem de um sistema de spin equivalente / Abstract: The design of a quantum computer is a project which drives, at the same time, technological advancement and a better understanding of the properties of quantum systems and of Quantum Mechanics in general. The threshold theorem comes from quantum error correction theory and it guarantees that, if stochastic noise affecting the components of a quantum computer is below some threshold value, we can operate this quantum computer reliably. We investigate how this theorem is modified when we consider a quantum memory (which uses the surface code to correct errors) coupled to a correlated environment. The error threshold in this case is related the order-disorder phase transition of an equivalent spin system / Doutorado / Física / Doutor em Ciências
23

Stabilisation exponentielle des systèmes quantiques soumis à des mesures non destructives en temps continu / Exponential stabilization of quantum systems subject to non-demolition measurements in continuous time

Cardona Sanchez, Gerardo 30 October 2019 (has links)
Dans cette thèse, nous développons des méthodes de contrôle pour stabiliser des systèmes quantiques en temps continu sous mesures quantiques non-destructives. En boucle ouverte, ces systèmes convergent vers un état propre de l'opérateur de mesure, mais l'état résultant est aléatoire. Le rôle du contrôle est de préparer un état prescrit avec une probabilité de un. Le nouvel élément pour atteindre cet objectif est l'utilisation d'un mouvement Brownien pour piloter les actions de contrôle. En utilisant la théorie stochastique de Lyapunov, nous montrons stabilité exponentielle globale du système en boucle fermés. Nous explorons aussi la syntèse du contrôle pour stabiliser un code correcteur d'erreurs quantiques en temps continu. Un autre sujet d'intérêt est l'implementation de contrôles efficacement calculables dans un contexte expérimental. Dans cette direction, nous proposons l'utilisation de contrôles et filtres qui calculent seulement les characteristiques classiques du système, correspondant a la base propre de l'opérateur de mesure. La formulation de dites filtres est importante pour adresser les problèmes de scalabilité du filtre posées par l'avancement des technologies quantiques. / In this thesis, we develop control methods to stabilize quantum systems in continuous-time subject to quantum nondemolition measurements. In open-loop such quantum systems converge towards a random eigenstate of the measurement operator. The role of feedback is to prepare a prescribed eigenstate with unit probability. The novel element to achieve this is the introduction of an exogenous Brownian motion to drive the control actions. By using standard stochastic Lyapunov techniques, we show global exponential stability of the closed-loop dynamics. We explore as well the design of the control layer for a quantum error correction scheme in continuous-time. Another theme of interest is towards the implementation of efficiently computable control laws in experimental settings. In this direction, we propose the use control laws and of reduced-order filters which only track classical characteristics of the system, corresponding to the populations on the measurement eigenbasis. The formulation of these reduced filters is important to address the scalability issues of the filter posed by the advancement of quantum technologies.
24

[pt] EVOLUINDO CÓDIGOS DE CORREÇÃO DE ERROS QUÂNTICOS / [en] EVOLVING QUANTUM ERROR CORRECTION CODES

DANIEL RIBAS TANDEITNIK 28 June 2022 (has links)
[pt] Métodos computacionais se tornam essenciais diante de problemas complexos onde a intuição humana e métodos tradicionais falham. Trabalhos recentes apresentam redes neurais artificiais capazes de realizar eficientemente tarefas intratáveis por algoritmos convencionais com o emprego de aprendizado de máquina, tornando-se assim um dos métodos mais populares. Concomitantemente, algoritmos genéticos, inspirados pelos processos biológicos de seleção natural e mutação, têm sido utilizados como método metaheurístico para encontrar soluções de problemas de otimização. Levantamos então a questão se algoritmos genéticos possuem potencial para resolver problemas no contexto da computação quântica, onde a intuição humana decresce à medida que os sistemas físicos crescem. Especificamente, nos concentramos na evolução de códigos de correção de erros quânticos dentro do formalismo de códigos stabilizer. Ao especificar uma função de fitness apropriada, mostramos que somos capazes de evoluir códigos celebrados, como o código do Shor e o perfeito de 9 e 5 qubits respectivamente, além de novos exemplos não antecipados. Adicionalmente, comparamos com o método força bruta de busca aleatória e verificamos uma crescente superioridade do algoritmo genético conforme aumenta-se o número total de qubits. Diante dos resultados, imaginamos que algoritmos genéticos possam se tornar ferramentas valiosas para desempenhar aplicações complexas em sistemas quânticos e produzir circuitos sob medida que satisfaçam restrições impostas por hardware. / [en] Computational methods become essential in the face of complex problems where human intuition and traditional methods fail. Recent works present artificial neural networks capable of efficiently performing tasks intractable by conventional algorithms using machine learning, rendering it one of the most popular methods. Concomitantly, genetic algorithms, inspired by the biological processes of natural selection and mutation, have been used as a metaheuristic method to find solutions to optimization problems. We then raise the question of whether genetic algorithms have the potential to solve problems in the context of quantum computing, where human intuition decreases as physical systems grow. Specifically, we focus on the evolution of quantum error-correcting codes within the stabilizer code formalism. By specifying an appropriate fitness function, we show that we can evolve celebrated codes, such as the Perfect and Shor s code with respectively 5 and 9 qubits, in addition to new unanticipated examples. Additionally, we compared it with a brute force random search and verified an increasing superiority of the genetic algorithm as the total number of qubits increases. Given the results, we foresee that genetic algorithms can become valuable tools to perform complex applications in quantum systems and produce tailored circuits that satisfy restrictions imposed by hardware.
25

Integrated Optics Modules Based Proposal for Quantum Information Processing, Teleportation, QKD, and Quantum Error Correction Employing Photon Angular Momentum

Djordjevic, Ivan B. 02 1900 (has links)
To address key challenges for both quantum communication and quantum computing applications in a simultaneous manner, we propose to employ the photon angular momentum approach by invoking the well-known fact that photons carry both the spin angular momentum (SAM) and the orbital angular momentum (OAM). SAM is associated with polarization, while OAM is associated with azimuthal phase dependence of the complex electric field. Given that OAM eigenstates are mutually orthogonal, in principle, an arbitrary number of bits per single photon can be transmitted. The ability to generate/analyze states with different photon angular momentum, by using either holographic or interferometric methods, allows the realization of quantum states in multidimensional Hilbert space. Because OAM states provide an infinite basis state, while SAM states are 2-D only, the OAM can also be used to increase the security for quantum key distribution (QKD) applications and improve computational power for quantum computing applications. The goal of this paper is to describe photon angular momentum based deterministic universal quantum qudit gates, namely, {generalized-X, generalized-Z, generalized-CNOT} qudit gates, and different quantum modules of importance for various applications, including (fault-tolerant) quantum computing, teleportation, QKD, and quantum error correction. For instance, the basic quantum modules for quantum teleportation applications include the generalized-Bell-state generation module and the QFT-module. The basic quantum module for quantum error correction and fault-tolerant computing is the nonbinary syndrome calculator module. The basic module for entanglement assisted QKD is either the generalized-Bell-state generation module or the Weyl-operator-module. The possibility of implementing all these modules in integrated optics is discussed as well. Finally, we provide security analysis of entanglement assisted multidimensional QKD protocols, employing the proposed qudit modules, by taking into account the imperfect generation of OAM modes.
26

Strongly driven quantum Josephson circuits / Circuits Josephson quantiques en présence de champs forts

Verney, Lucas 11 July 2019 (has links)
Dans cette thèse, nous étudions le comportement de circuits Josephson sous l'action de champs microondes forts. Les circuits Josephson dans le régime quantique sont une brique pour émuler une variété d'hamiltoniens, utiles pour traiter l'information quantique. Nous étudions ici le transmon, constitué d'une jonction Josephson et d'un condensateur en parallèle. À travers des simulations numériques et en comparant aux résultats expérimentaux, nous montrons que ces champs conduisent à une instabilité qui envoie le circuit sur des états qui ne sont plus confinés par le potentiel Josephson en cosinus. Quand le transmon occupe de tels états, le circuit se comporte comme si la jonction avait été remplacée par un interrupteur ouvert et toute non-linéarité est perdue, ce qui se traduit par des limitations sur les amplitudes maximales des hamiltoniens émulés. Dans une deuxième partie, nous proposons et étudions un circuit alternatif basé sur un transmon avec une inductance en parallèle, qui fournit un confinement harmonique. La dynamique de ce circuit est stable et bien capturée par un modèle moyennisé qui fournit alors un outil pratique pour l'analyse analytique ou les simulations rapides. Nous avons développé un nouvel outil de simulations modulaire et basé sur la théorie de FloquetMarkov pour permettre de simuler facilement d'autres circuits Josephson en évitant les limitations des analyses perturbatives. Enfin, nous étudions les propriétés d'une version asymétrique du Josephson Ring Modulator, un circuit actuellement utilisé pour l'amplification et la conversion, comme source de non-linéarité pour émuler les hamiltoniens d'interaction à deux et quatre photons requis pour l'encodage de l'information quantique sur des états de chats de Schrödinger. / In this thesis, we investigate the behavior of Josephson circuits under the action of strong microwave drives. Josephson circuits in the quantum regime are a building block to emulate a variety of Hamiltonians, useful to process quantum information. We are here considering a transmon device, made of a Josephson junction and a capacitor in parallel. Through numerical simulations and comparison with experimental results, we show that these drives lead to an instability which results in the escape of the circuit state into states which are no longer confined by the Josephson cosine potential. When the transmon occupies such states, the circuit behaves as if the junction had been removed and all non-linearities are lost, which translates into limitations on the emulated Hamiltonian strengths. In a second part, we propose and study an alternative circuit consisting of a transmon device with an extra inductive shunt, providing a harmonic confinement. This circuit is found to be stable for all pump powers. The dynamics of this circuit is also well captured by a time-averaged model, providing a useful tool for analytical investigation and fast numerical simulations. We developed a novel numerical approach that avoids the built-in limitations of perturbative analysis to investigate the dynamical behavior of both of these circuits. This approach, based on the Floquet-Markov theory, resulted in a modular simulation framework which can be used to study other Josephson-based circuits. Last, we study the properties of an asymmetric version of the Josephson Ring Modulator, a circuit currently used for amplification and conversion, as a more robust source of non-linearity to engineer two-photon and four-photon interaction Hamiltonians required for the catstate encoding of quantum information.
27

Minimising the Decoherence of Rare Earth Ion Solid State Spin Qubits

Fraval, Elliot, elliot.fraval@gmail.com January 2006 (has links)
[Mathematical symbols can be only approximated here. For the correct display see the Abstract in the PDF files linked below] This work has demonstrated that hyperfine decoherence times sufficiently long for QIP and quantum optics applications are achievable in rare earth ion centres. Prior to this work there were several QIP proposals using rare earth hyperfine states for long term coherent storage of optical interactions [1, 2, 3]. The very long T_1 (~weeks [4]) observed for rare-earth hyperfine transitions appears promising but hyperfine T_2s were only a few ms, comparable to rare earth optical transitions and therefore the usefulness of such proposals was doubtful. ¶ This work demonstrated an increase in hyperfine T_2 by a factor of 7 × 10^4 compared to the previously reported hyperfine T_2 for Pr^[3+]:Y_2SiO_5 through the application of static and dynamic magnetic field techniques. This increase in T_2 makes previous QIP proposals useful and provides the first solid state optically active Lamda system with very long hyperfine T_2 for quantum optics applications. ¶ The first technique employed the conventional wisdom of applying a small static magnetic field to minimise the superhyperfine interaction [5, 6, 7], as studied in chapter 4. This resulted in hyperfine transition T_2 an order of magnitude larger than the T_2 of optical transitions, ranging fro 5 to 10 ms. The increase in T_2 was not sufficient and consequently other approaches were required. ¶ Development of the critical point technique during this work was crucial to achieving further gains in T_2. The critical point technique is the application of a static magnetic field such that the Zeeman shift of the hyperfine transition of interest has no first order component, thereby nulling decohering magnetic interactions to first order. This technique also represents a global minimum for back action of the Y spin bath due to a change in the Pr spin state, allowing the assumption that the Pr ion is surrounded by a thermal bath. The critical point technique resulted in a dramatic increase of the hyperfine transition T_2 from ~10 ms to 860 ms. ¶ Satisfied that the optimal static magnetic field configuration for increasing T_2 had been achieved, dynamic magnetic field techniques, driving either the system of interest or spin bath were investigated. These techniques are broadly classed as Dynamic Decoherence Control (DDC) in the QIP community. The first DDC technique investigated was driving the Pr ion using a CPMG or Bang Bang decoupling pulse sequence. This significantly extended T_2 from 0.86 s to 70 s. This decoupling strategy has been extensively discussed for correcting phase errors in quantum computers [8, 9, 10, 11, 12, 13, 14, 15], with this work being the first application to solid state systems. ¶ Magic Angle Line Narrowing was used to investigate driving the spin bath to increase T_2. This experiment resulted in T_2 increasing from 0.84 s to 1.12 s. Both dynamic techniques introduce a periodic condition on when QIP operation can be performed without the qubits participating in the operation accumulating phase errors relative to the qubits not involved in the operation. ¶ Without using the critical point technique Dynamic Decoherence Control techniques such as the Bang Bang decoupling sequence and MALN are not useful due to the sensitivity of the Pr ion to magnetic field fluctuations. Critical point and DDC techniques are mutually beneficial since the critical point is most effective at removing high frequency perturbations while DDC techniques remove the low frequency perturbations. A further benefit of using the critical point technique is it allows changing the coupling to the spin bath without changing the spin bath dynamics. This was useful for discerning whether the limits are inherent to the DDC technique or are due to experimental limitations. ¶ Solid state systems exhibiting long T_2 are typically very specialised systems, such as 29Si dopants in an isotopically pure 28Si and therefore spin free host lattice [16]. These systems rely on on the purity of their environment to achieve long T_2. Despite possessing a long T_2, the spin system remain inherently sensitive to magnetic field fluctuations. In contrast, this work has demonstrated that decoherence times, sufficiently long to rival any solid state system [16], are achievable when the spin of interest is surrounded by a concentrated spin bath. Using the critical point technique results in a hyperfine state that is inherently insensitive to small magnetic field perturbations and therefore more robust for QIP applications.
28

Information flow at the quantum-classical boundary

Beny, Cedric January 2008 (has links)
The theory of decoherence aims to explain how macroscopic quantum objects become effectively classical. Understanding this process could help in the search for the quantum theory underlying gravity, and suggest new schemes for preserving the coherence of technological quantum devices. The process of decoherence is best understood in terms of information flow within a quantum system, and between the system and its environment. We develop a novel way of characterizing this information, and give a sufficient condition for its classicality. These results generalize previous models of decoherence, clarify the process by which a phase-space based on non-commutative quantum variables can emerge, and provide a possible explanation for the universality of the phenomenon of decoherence. In addition, the tools developed in this approach generalize the theory of quantum error correction to infinite-dimensional Hilbert spaces. We characterize the nature of the information preserved by a quantum channel by the observables which exist in its image (in the Heisenberg picture). The sharp observables preserved by a channel form an operator algebra which can be characterized in terms of the channel's elements. The effect of the channel on these observables can be reversed by another physical transformation. These results generalize the theory of quantum error correction to codes characterized by arbitrary von Neumann algebras, which can represent hybrid quantum-classical information, continuous variable systems, or certain quantum field theories. The preserved unsharp observables (positive operator-valued measures) allow for a finer characterization of the information preserved by a channel. We show that the only type of information which can be duplicated arbitrarily many times consists of coarse-grainings of a single POVM. Based on these results, we propose a model of decoherence which can account for the emergence of a realistic classical phase-space. This model supports the view that the quantum-classical correspondence is given by a quantum-to-classical channel, which is another way of representing a POVM.
29

Information flow at the quantum-classical boundary

Beny, Cedric January 2008 (has links)
The theory of decoherence aims to explain how macroscopic quantum objects become effectively classical. Understanding this process could help in the search for the quantum theory underlying gravity, and suggest new schemes for preserving the coherence of technological quantum devices. The process of decoherence is best understood in terms of information flow within a quantum system, and between the system and its environment. We develop a novel way of characterizing this information, and give a sufficient condition for its classicality. These results generalize previous models of decoherence, clarify the process by which a phase-space based on non-commutative quantum variables can emerge, and provide a possible explanation for the universality of the phenomenon of decoherence. In addition, the tools developed in this approach generalize the theory of quantum error correction to infinite-dimensional Hilbert spaces. We characterize the nature of the information preserved by a quantum channel by the observables which exist in its image (in the Heisenberg picture). The sharp observables preserved by a channel form an operator algebra which can be characterized in terms of the channel's elements. The effect of the channel on these observables can be reversed by another physical transformation. These results generalize the theory of quantum error correction to codes characterized by arbitrary von Neumann algebras, which can represent hybrid quantum-classical information, continuous variable systems, or certain quantum field theories. The preserved unsharp observables (positive operator-valued measures) allow for a finer characterization of the information preserved by a channel. We show that the only type of information which can be duplicated arbitrarily many times consists of coarse-grainings of a single POVM. Based on these results, we propose a model of decoherence which can account for the emergence of a realistic classical phase-space. This model supports the view that the quantum-classical correspondence is given by a quantum-to-classical channel, which is another way of representing a POVM.
30

Quantum stabilizer codes and beyond

Sarvepalli, Pradeep Kiran 10 October 2008 (has links)
The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. Despite the large body of literature in quantum coding theory, many important questions, especially those centering on the issue of "good codes" are unresolved. In this dissertation the dominant underlying theme is that of constructing good quantum codes. It approaches this problem from three rather different but not exclusive strategies. Broadly, its contribution to the theory of quantum error correction is threefold. Firstly, it extends the framework of an important class of quantum codes - nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. In particular it provides many explicit constructions of stabilizer codes, most notably it simplifies the criteria by which quantum BCH codes can be constructed from classical codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. Prior to our work however, systematic methods to construct these codes were few and it was not clear how to fairly compare them with other classes of quantum codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work established a close link between subsystem codes and classical codes and it became clear that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels. This approach is based on a Calderbank- Shor-Steane construction that combines BCH and finite geometry LDPC codes.

Page generated in 0.328 seconds