Spelling suggestions: "subject:"[een] QUANTUM OPTICS"" "subject:"[enn] QUANTUM OPTICS""
181 |
Quantum Sensing of Photonic Spin Density with Spin QubitsFarid Kalhor (11820050) 19 December 2021 (has links)
<div>Optical signals are a necessary tool for quantum technologies to carry information both for long-range and on-chip application. The scope of their use is determined by their ability to effectively interact with qubits. The deep-subwavelength interaction volume demands the understanding of the properties of optical fields in the near-field and light-matter interaction in this regime. Recent studies have unraveled the rich characteristics in the physical quantity known as the near-field photonic spin density (PSD). Photonic spin density is the spatial distribution of light's spin angular momentum. It is characterized by the degree of circular polarization of an optical field in deep-subwavelength volumes. In this thesis we study the properties of PSD in the near-field regime and demonstrate a platform for coherent light-spin-qubit interaction based on PSD. We show that nitrogen-vacancy (NV) centers in diamond can coherently interact with an optical beam where the interaction strength is determined by PSD in the nanoscale. To understand the near-field characteristics of PSD we study the evanescent waves and spin-momentum locking of light.</div><div><br></div><div>Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, direction of decay, and direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE<sub>11</sub> mode of an optical fiber.</div><div>Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles is caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles. </div><div><br></div><div>To probe the near-field properties of PSD, we propose and employ a single NV center in diamond as a nanoscale sensor. NV centers have emerged as promising room-temperature quantum sensors for probing condensed matter phenomena ranging from spin liquids, two-dimensional (2D) magnetic materials, and magnons to hydrodynamic flow of current. Here, we demonstrate that the NV center in diamond can be used as a quantum sensor for detecting the photonic spin density. We exploit a single spin qubit on an atomic force microscope tip to probe the spinning field of an incident Gaussian light beam. The spinning field of light induces an effective static magnetic field in the single spin qubit probe. We perform room-temperature sensing using Bloch sphere operations driven by a microwave field (XY8 protocol). This nanoscale quantum magnetometer can measure the local polarization of light in ultra-sub-wavelength volumes. We also put forth a rigorous theory of the experimentally measured phase change using the NV center Hamiltonian and perturbation theory involving only virtual photon transitions. </div><div><br></div><div>In order to study the wavelength dependence of the optically induced magnetic field, we demonstrate this effect for an ensemble of NV centers. We characterize the wavelength dependence of the effective static magnetic field caused by the interaction of PSD and the spin qubit. We show that the strength of the field is inversely dependent on the detuning between the frequency of the optical beam and the optical transition of the NV centers. We show an optically induced rotation of over 10 degrees in the spin qubit of NV centers at room temperature. The direct detection of the photonic spin density at the nanoscale using NV centers in diamond opens interesting quantum metrological avenues for studying exotic phases of photons, nanoscale properties of structured light as well as future on-chip applications. </div><div><br></div>
|
182 |
Spin Manipulation of the Nitrogen Vacancy Center and its ApplicationsStaacke, Robert 10 August 2021 (has links)
Das Stickstoff-Fehlstellen-Zentrum (NV-Zentrum) in Diamant ist eines der vielver-
sprechendsten Spinsysteme für Anwendungen im Bereich Quanten-Computing,
-Information und -Sensorik. Die Abhängigkeit der Fluoreszenzintensität vom Spinzu-
stand ermöglicht dabei das rein optische Auslesen des Spinzustandes. Für alle
Anwendungen, die auf aktive Spinmanipulation angewiesen sind, ist Mikrowellen-
strahlung unverzichtbar. Die Fähigkeit, den Spinzustand von NV-Zentren vollständig
zu kontrollieren, wird durch die Richtung, Intensität und Polarisation der Mikrow-
ellenstrahlung definiert. Es gibt verschiedene Ansätze, um geeignete Mikrowellen-
strahlung zu erzeugen, aber oft ist die Feldintensität zu gering oder es gibt andere
Einschränkungen, z.B. eine geringe Frequenzbandbreite.
Im ersten Teil meiner Arbeit untersuche ich transparente Leiter auf Basis von Indium-
Zinn-Oxid (ITO), um die Mikrowellenansteuerung von NV-Zentren zu optimieren.
Dabei wird eine detaillierte Analyse von ITO auf Diamant bezüglich einzelner
NV-Zentren vorgestellt. Ein mathematisches Modell wurde entwickelt, um die
Feldverteilung vorherzusagen. Zusätzlich wird eine Methode zur Kontrolle der
Mikrowellenpolarisation mit einer transparenten ITO-Struktur vorgestellt, die zu
einer vollständigen Kontrolle des Spinzustands des NV-Zentrums führt. Weiterhin
werden Simulationen in Kombination mit einem analytischen Modell verwendet, um
optimale Mikrowellenparameter für die Spinkontrolle vorherzusagen.
Für eine kommerzielle Anwendung von NV-Zentren als Magnetfeldsensor sind Pro-
duktionskosten und Bauteilkomplexität wichtige Faktoren, die in der Forschung
oft vernachlässigt werden. Der zweite Teil meiner Arbeit konzentriert sich da-
her auf einen mikrowellenfreien Ansatz zur Magnetometrie mit NV-Zentren. Der
Einfluss der Laseranregung auf den magnetischen Kontrast wird an einzelnen NV-
Zentren, Ensembles von NV-Zentren und Nano-Diamantpulver mit einer hohen NV-
Zentrenkonzentration dargestellt und nachfolgend zur Demonstration von isotropen
Magnetfeldmessung verwendet. Abschließend wird die Anwendbarkeit durch die
Konstruktion eines Magnetfeldsensors aus Komponenten der Automobilbranche
gezeigt. / The nitrogen vacancy center (NV center) in diamond is one of the most promising
spin systems for applications in quantum computing, information and sensing. The
dependency of the fluorescence intensity on the spin state allows a purely optical
readout of the spin state. A green laser can be used to pump the NV center in the
spin ground state while microwave radiation can manipulate the spin state of the
NV center. For all applications depending on active spin manipulation, microwave
radiation is indispensable. The ability to fully control the spin state of NV centers is
defined by direction, strength and polarization of the microwave radiation. Different
approaches exist to deliver the microwave radiation, but they often lack in strength
or have other restrictions, e.g. a small frequency band width.
In the first part of my thesis, I investigate transparent conductors based on indium
tin oxide (ITO) to optimize microwave delivery. In this process a detailed analysis
of ITO on diamond concerning confocal microscopy through this transparent film
is presented. A mathematical model was developed and tested to predict the field
distribution in possible applications. Additionally a method to control microwave
polarization with a transparent ITO structure is shown which results in full spin
state control of the NV center. Furthermore simulations combined with a analytical
model are used to predict optimal microwave parameters for spin control.
For a commercial application of NV centers as a magnetic field sensor, important
factors are production cost and device complexity which are often neglected in
research. The second part of my thesis therefore focuses on a microwave free
approach of NV center magnetometry for industry applications. The influence of
laser excitation on magnetic contrast was studied on single NV centers, ensembles
of NV centers and nano diamond powder with a high NV center concentration. The
findings were used to demonstrate isotropic magnetic field sensing. Finally, the
applicability was shown by constructing a magnetic field sensor from automotive
grade components.
|
183 |
Theoretical studies of optical non-linear effects in ultracold Rydberg gases / Etudes théoriques d’effets optiques non-linéaires dans un gaz ultrafroid d’atomes de RydbergGrankin, Andrey 21 June 2016 (has links)
Les photons apparaissent comme des vecteurs d'information fiables, car ils interagissent peu avec leur environnement. Malheureusement, ils interagissent si faiblement entre eux que la réalisation directe de portes logiques optiques à deux qubits est impossible. La propagation à travers des milieux atomiques non-linéaires permet néanmoins d'engendrer des interactions photon-photon effectives. L'utilisation du phénomène de transparence électromagnétiquement induite (EIT) permet d'induire une forte non-linearité résonante -- néanmoins pas encore détectable dans le domaine quantique, sur une transition d'un système à trois niveaux en “échelle”. Pour augmenter les effets non-linéaires et atteindre le régime quantique, il a récemment été proposé de combiner l'approche EIT au blocage d'excitation induit par les fortes interactions dipôle-dipôle entre atomes de Rydberg. En plaçant le milieu en cavité, on impose à la lumière des passages multiples et on accroît encore la non-linéarité optique. Ce type de dispositif a été étudié théoriquement et expérimentalement dans le régime dispersif et pour une non-linéarité faible, pour lequel un traitement classique du champ est adapté. Dans le présent mémoire, nous nous intéressons aux effets optiques non-linéaires induits par un milieu Rydberg dans le régime quantique.Dans le chapitre 1, nous présentons notre système d'étude, ses équations dynamiques et rappelons la définition et les principales propriétés de la fonction de corrélation d'intensité g^{2}que nous utilisons pour caractériser l'action de la non-linéarité sur le champ incident. Dans le chapitre 2, nous considérons le régime dispersif, i.e. lorsque l'état intermediaire est très désaccordé et peut être éliminé adiabatiquement. Nous utilisons l'approximation des bulles Rydberg selon laquelle le système peut être effectivement ramené à un ensemble de superatomes à deux niveaux couplés au mode de la cavité, décrit par le modèle de Tavis-Cummings forcé. Nous calculons analytiquement et numériquement la fonction g^{2}pour la lumière transmise, qui, selon les paramètres de la cavité, peut être “groupée” ou “dégroupée”. Dans le chapitre 3, nous présentons un traitement alternatif du système, qui nous permet d'étudier le régime résonant. Dans la limite d'un champ incident faible, nous dérivons analytiquement la fonction de corrélation g^{2} pour les lumières transmise et réfléchie, grâce à la factorisation des moyennes de produits d'opérateurs à l'ordre le plus bas de la théorie de perturbation. Nous proposons ensuite un modèle effectif non-linéaire à trois bosons pour le système couplé atomes-cavité. Enfin, nous étudions le régime résonant et observons de nouvelles caractéristiques de la fonction de corrélation g^{2}qui attestent la relation entre les conditions d'adaptation d'impédance de la cavité pour les différentes composantes du champ et les interactions dipôle-dipôle entre les atomes. Dans le chapitre 4, nous analysons le système dans le formalisme de Schwinger-Keldysh. En appliquant le théorème de Wick, nous développons perturbativement les fonctions de corrélation par rapport au Hamiltonien d'alimentation de la cavité et au Hamiltonien d'interaction dipôle-dipôle et effectuons une resommation complète par rapport à ce dernier. Nous retrouvons par cette méthode les résultats du Chapitre 3, sous une forme analytique. Nous allons aussi au-delà et derivons des expressions analytiques pour les composantes élastique et inélastique du spectre en transmission de la cavité. Nous identifions une structure de résonance polaritonique, jusque-là inconnue, que nous interprétons physiquement. Dans le chapitre 5, nous décrivons un protocole de porte photonique de phase de haute fidélité fondé sur le blocage Rydberg dans un ensemble atomique placé dans une cavité optique. Ce protocole peut être réalisé avec des cavités de finesse modérée et permet en principe un traitement efficace de l'information quantique codée dans des photons. / Photons appear as reliable information messengers since they interact very weakly with their environment. Unfortunately, they interact so weakly with each other that the direct implementation of optical two-qubit gates is impossible. The propagation through atomic nonlinear media however allows one to achieve effective photon-photon interactions. The technique of electromagnetically induced transparency (EIT) allows one to induce a strong resonant non-linearity -- not strong enough to be noticeable in the quantum domain though, on one of the transitions of a three-level ladder system. To enhance the nonlinear effects and reach the quantum regime, it was recently proposed to combine the EIT approach with the excitation blockade induced by the strong dipole-dipole interactions between Rydberg atoms. By putting the medium in a cavity, one imposes multiple passes to the light therefore increasing the optical nonlinearity. This kind of setup was studied both theoretically and experimentally in the dispersive regime and for a relatively weak nonlinearity, for which a classical treatment of the field is still valid. In this dissertation, we investigate the optical nonlinear effects induced by a Rydberg medium in the quantum regime.In chapter 1, we present our system, its dynamical equations and recall the definition and basic properties of the intensity correlation function g^{left(2right)}that we use to characterize the action of nonlinearity on the photonic field. In chapter 2, we consider the so-called dispersive regime, i.e. when the intermediate state is far detuned and can be adiabatically eliminated. We employ the Rydberg bubble approximation in which the system effectively consists in an ensemble of two-level superatoms coupled to the cavity mode, described by the driven Tavis-Cummings model. We compute analytically and numerically the g^{left(2right)}function of the transmitted light, which, depending on the cavity parameters, is shown to be either bunched or antibunched. In chapter 3, we present an alternative treatment of the system, which allows us to investigate the resonant regime. In the low-feeding limit, we analytically derive the correlation function g^{left(2right)}left(tauright)for the transmitted and reflected lights, based on the factorization of the lowest perturbative order of operator product averages. We then propose an effective non-linear three-boson model for the coupled atom-cavity system. Finally, we investigate the resonant regime and observe novel features of the correlation function g^{left(2right)}showing the interplay of impedance matching conditions and dipole-dipole interactions. In chapter 4, we analyze the system in the Schwinger-Keldysh formalism. Applying Wick's theorem, we perturbatively expand correlation functions with respect to both, feeding and dipole-dipole interactions Hamiltonians and perform a complete resummation with respect to the latter. By this method we recover the results of Chap. 3 in an analytic form. We also go beyond and derive analytic expressions for the elastic and inelastic components of the cavity transmission spectrum. We identify a polaritonic resonance structure in this spectrum, to our knowledge unreported so far, that we physically interpret. In chapter 5, we describe a novel scheme for high fidelity photonic controlled-phase gates using Rydberg blockade in an ensemble of atoms in an optical cavity. This protocol can be implemented with cavities of moderate finesse allowing for highly efficient processing of quantum information encoded in photons.
|
184 |
Unbiased four-port photonic circuit for quantum information applicationsManni, Anthony Dante 08 June 2023 (has links)
Recent advances in linear quantum optics have involved the development of
unbiased, multi-port optical elements for use with pairs of identical photons, or biphotons, for the design of novel quantum devices. The unbiased counterpart of a conventional 50:50 beam-splitter is a particularly useful multiport, thanks to its unique algebraic properties when acting on both classical and quantum states of light. Dubbed the “Grover coin” due to its utility in the Grover’s Search quantum algorithm, the unbiased four-port behaves as a conventional beam splitter, but with two additional ports to provide a photon amplitude with four, equally-probable, spatially distinct paths through which it may propagate. While the Grover coin has been realized in the laboratory in the form of bulk optical elements, the formation of a network of Grover coins is impractical due to the meticulous alignment and large number of elements required for a single component. Therefore, the development of a small, chip-integrated embodiment of the unbiased four-port would enable experimentation with novel quantum optics theories, through the interconnection of multiple Grover coins over a small footprint. This thesis details the design and fabrication of photonic waveguide-based integrated circuit elements through numerical simulation, topology optimization and CMOS-compatible manufacturing processes. / 2025-06-08T00:00:00Z
|
185 |
Modeling And Design Of A Photonic Crystal Chip Hosting A Quantum Network Made Of Single Spins In Quantum Dots That Interact Via Single PhotonsSeigneur, Hubert P. 01 January 2010 (has links)
In this dissertation, the prospect of a quantum technology based on a photonic crystal chip hosting a quantum network made of quantum dot spins interacting via single photons is investigated. The mathematical procedure to deal with the Liouville-Von Neumann equation, which describes the time-evolution of the density matrix, was derived for an arbitrary system, giving general equations. Using this theoretical groundwork, a numerical model was then developed to study the spatiotemporal dynamics of entanglement between various qubits produced in a controlled way over the entire quantum network. As a result, an efficient quantum interface was engineered allowing for storage qubits and traveling qubits to exchange information coherently while demonstrating little error and loss in the process; such interface is indispensable for the realization of a functional quantum network. Furthermore, a carefully orchestrated dynamic control over the propagation of the flying qubit showed high-efficiency capability for on-chip single-photon transfer. Using the optimized dispersion properties obtained quantum mechanically as design parameters, a possible physical structure for the photonic crystal chip was constructed using the Plane Wave Expansion and FiniteDifference Time-Domain numerical techniques, exhibiting almost identical transfer efficiencies in terms of normalized energy densities of the classical electromagnetic field. These promising results bring us one step closer to the physical realization of an integrated quantum technology combining both semiconductor quantum dots and subwavelength photonic structures.
|
186 |
Computational Study Of The Near Field Spontaneous Creation Of Photonic States Coupled To Few Level SystemsTafur, Sergio 01 January 2011 (has links)
Models of the spontaneous emission and absorption of photons coupled to the electronic states of quantum dots, molecules, N-V (single nitrogen vacancy) centers in diamond, that can be modeled as artificial few level atoms, are important to the development of quantum computers and quantum networks. A quantum source modeled after an effective few level system is strongly dependent on the type and coupling strength the allowed transitions. These selection rules are subject to the Wigner-Eckert theorem which specifies the possible transitions during the spontaneous creation of a photonic state and its subsequent emission. The model presented in this dissertation describes the spatio-temporal evolution of photonic states by means of a Dirac-like equation for the photonic wave function within the region of interaction of a quantum source. As part of this aim, we describe the possibility to shift from traditional electrodynamics and quantum electrodynamics, in terms of electric and magnetic fields, to one in terms of a photonic wave function and its operators. The mapping between these will also be presented herein. It is further shown that the results of this model can be experimentally verified. The suggested method of verification relies on the direct comparison of the calculated density matrix or Wigner function, associated with the quantum state of a photon, to ones that are experimentally reconstructed through optical homodyne tomography techniques. In this non-perturbative model we describe the spontaneous creation of photonic state in a non-Markovian limit which does not implement the Weisskopf-Wigner approximation. We further show that this limit is important for the description of how a single photonic mode is created from the possibly infinite set of photonic frequencies νk that can be excited in a dielectric-cavity from the vacuum state. We use discretized central-difference approximations to the space and time partial derivatives, similar to finite-difference time domain models, to compute these results. The results presented herein show that near field effects need considered when describing adjacent quantum sources that are separated by distances that are small with respect to the wavelength of iii their spontaneously created photonic states. Additionally, within the future scope of this model, we seek results in the Purcell and Rabi regimes to describe enhanced spontaneous emission events from these few-level systems, as embedded in dielectric cavities. A final goal of this dissertation is to create novel computational and theoretical models that describe single and multiple photon states via single photon creation and annihilation operators.
|
187 |
A Radio-Frequency Synchronization System for Fiber-Optic Quantum NetworksStephen Donahue Chapman (18072259) 29 February 2024 (has links)
<p dir="ltr">This thesis discusses the use of a fiber optic system to synchronize GHz frequency radio-frequency signals over distances of up to 5 km and its future applications in quantum communications. The stability of the synchronization is assessed by an ‘identity gate’, where each radio-frequency signal drives a phase modulator, and the frequency profile of a continuous wave laser sent through both modulators indicates the stability of the RF signals relative to one another. Experimental results indicate that 19 GHz signals synchronized over 5.5 km drifted less than 1 ps over 30 minutes. This is superior to the radio-frequency synthesizers’ built in synchronization method and to other commonly used protocols. To illustrate an application, the system was employed in a quantum nonlocal modulation cancellation experiment. Joint spectral characterization of the biphotons shows that this synchronization scheme can be used for nodes in a quantum communications network. More specifically, possible future applications of this technology include use in a photonic quantum local area network at Oak Ridge National Laboratories.</p>
|
188 |
Hybrid Optomechanics and the Dynamical Casimir EffectMcCutcheon, Robert A. 01 August 2017 (has links)
No description available.
|
189 |
Spin and Tunneling Effects in Coupled Quantum DotsRamanathan, Swati 26 July 2012 (has links)
No description available.
|
190 |
Next-Generation Metasurface Applications Powered by Empirical Designs and Machine LearningHuang, Xiaoyan January 2024 (has links)
Metasurfaces have presented themselves as next generation optical platforms with an unprecedented capability to exert designer amplitude, phase, and polarization control on incoming electromagnetic (EM) waves. Existing works have focused on demonstrating simple optical functionalities (lensing, beam steering, holography) at longer wavelengths (microwave, infrared), and the design methodology has largely been empirical.
In this work, we demonstrate next generation metasurface applications in near infrared and visible wavelengths. The purpose of such applications evolves from imaging to complex machine vision applications, and as such calls for a updated design paradigm that combines traditional, empirical based methods with modern inverse design tools based on machine learning. We expand the potential of metasurfaces by demonstrating their interdisciplinary applications in complex imaging, quantum optics and optical computation. A homebrew fabrication and testing pipeline is developed to support the challenging mission of near infrared and visible frequency usage.
Furthermore, we propose a new design paradigm that combines physics informed intuitions with modern machine learning to simulate and design metasurface in an accurate and time-efficient way. In conclusion, I will discuss the outlook of metasurfaces in real-world applications, whose unique combination of performance and form factor make them ideal candidates for next-generation optical devices.
|
Page generated in 0.0542 seconds