• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regularity of a segregation problem with an optimal control operator

Soares Quitalo, Veronica Rita Antunes de 16 September 2013 (has links)
It is the main goal of this thesis to study the regularity of solutions for a nonlinear elliptic system coming from population segregation, and the free boundary problem that is obtained in the limit as the competition parameter goes to infinity [mathematical symbol]. The main results are existence and Hölder regularity of solutions of the elliptic system, characterization of the limit as a free boundary problem, and Lipschitz regularity at the boundary for the limiting problem. / text
2

On Holder continuity of weak solutions to degenerate linear elliptic partial differential equations

Mombourquette, Ethan 13 August 2013 (has links)
For degenerate elliptic partial differential equations, it is often desirable to show that a weak solution is smooth. The first and most difficult step in this process is establishing local Hölder continuity. Sufficient conditions for establishing continuity have already been documented in [FP], [SW1], and [MRW], and their necessity in [R]. However, the complexity of the equations discussed in those works makes it difficult to understand the core structure of the arguments employed. Here, we present a harmonic-analytic method for establishing Hölder continuity of weak solutions in context of a simple linear equation div(Q?u) = f in a homogeneous space structure in order to showcase the form of the argument. Ad- ditionally, we correct an oversight in the adaptation of the John-Nirenberg inequality presented in [SW1], restricting it to a much smaller class of balls.
3

[en] EXISTENCE AND REGULARITY OF SOLUTIONS: NONLOCAL AND NONLINEAR MODELS / [pt] EXISTÊNCIA E REGULARIDADE DE SOLUÇÕES: MODELOS NÃO LOCAIS E NÃO LINEARES

EDISON FAUSTO CUBA HUAMANI 14 September 2021 (has links)
[pt] Estudamos duas classes de equações diferenciais parciais, nomeadamente: uma equação de transferência radiativa e uma equação do calor duplamente não-linear. O primeiro modelo envolve uma equação não-local, na presença de um operador de espalhamento. Estuda-se a boa colocação do problema no semi-plano, no regime peaked. Prova-se um lema de averaging, que produz regularidade interior para o problema, além de regularização fracionária para as derivadas temporais da solução. O segundo conjunto de resultados da tese trata de uma equação de Trudinger com graus de não-linearidade distintos. Aproxima-se este problema pela p-equação do calor e importa-se regularidade da última para a primeira. Como consequência, mostra-se um resultado de regularidade melhorada no contexto não homogêneo. / [en] We consider two classes of partial differential equations. Namely: the radiative transfer equation and a doubly nonlinear model. The former concerns a nonlocal problema, driven by a scattering operator. We study the well-posedness of solutions in the peaked regime, for the half-space. A new averaging lemma yields interior regularity for the solutions and improved fractional regularization for the time derivatives. The second model we examine is a Trudinger equation with distinct nonlinearities degrees. Inspired by ideas launched by L. Caffarelli, we resort to approximation methods and prove improved regularity results for the solutions. The strategy is to relate our equation with p-caloric functions.

Page generated in 0.0385 seconds