• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2600
  • 609
  • 345
  • 332
  • 60
  • 53
  • 52
  • 34
  • 34
  • 34
  • 34
  • 34
  • 34
  • 31
  • 27
  • Tagged with
  • 5071
  • 747
  • 618
  • 614
  • 558
  • 479
  • 417
  • 416
  • 406
  • 402
  • 400
  • 384
  • 377
  • 377
  • 345
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

SWASAD Smith & Waterman-algorithm-specific ASIC design /

Han, Tony. January 2001 (has links) (PDF)
Thesis (M. Phil.)--University of Queensland, 2002. / Includes bibliographical references.
222

ExpaRNA-P : simultaneous exact pattern matching and folding of RNAs

Otto, Christina, Möhl, Mathias, Heyne, Steffen, Amit, Mika, Landau, Gad M., Backofen, Rolf, Will, Sebastian 22 January 2014 (has links) (PDF)
Background: Identifying sequence-structure motifs common to two RNAs can speed up the comparison of structural RNAs substantially. The core algorithm of the existent approach ExpaRNA solves this problem for a priori known input structures. However, such structures are rarely known; moreover, predicting them computationally is no rescue, since single sequence structure prediction is highly unreliable. Results: The novel algorithm ExpaRNA-P computes exactly matching sequence-structure motifs in entire Boltzmann-distributed structure ensembles of two RNAs; thereby we match and fold RNAs simultaneously, analogous to the well-known “simultaneous alignment and folding” of RNAs. While this implies much higher flexibility compared to ExpaRNA, ExpaRNA-P has the same very low complexity (quadratic in time and space), which is enabled by its novel structure ensemble-based sparsification. Furthermore, we devise a generalized chaining algorithm to compute compatible subsets of ExpaRNA-P’s sequence-structure motifs. Resulting in the very fast RNA alignment approach ExpLoc-P, we utilize the best chain as anchor constraints for the sequence-structure alignment tool LocARNA. ExpLoc-P is benchmarked in several variants and versus state-of-the-art approaches. In particular, we formally introduce and evaluate strict and relaxed variants of the problem; the latter makes the approach sensitive to compensatory mutations. Across a benchmark set of typical non-coding RNAs, ExpLoc-P has similar accuracy to LocARNA but is four times faster (in both variants), while it achieves a speed-up over 30-fold for the longest benchmark sequences (≈400nt). Finally, different ExpLoc-P variants enable tailoring of the method to specific application scenarios. ExpaRNA-P and ExpLoc-P are distributed as part of the LocARNA package. The source code is freely available at http://www.bioinf.uni-freiburg.de/Software/ExpaRNA-P webcite. Conclusions: ExpaRNA-P’s novel ensemble-based sparsification reduces its complexity to quadratic time and space. Thereby, ExpaRNA-P significantly speeds up sequence-structure alignment while maintaining the alignment quality. Different ExpaRNA-P variants support a wide range of applications.
223

Development of recombinant adeno-associated virus delivering short-hairpin RNAs to inhibit the replication of influenza A viruses

Zhang, Gui, 张桂 January 2011 (has links)
published_or_final_version / Microbiology / Doctoral / Doctor of Philosophy
224

A general RNA secondary structure algorithm with vertical tree grammar

Liu, Xinyi, 刘欣怡 January 2013 (has links)
Our understanding of the functions played by RNA molecules is expanded with the understanding of RNA structures. Except for primary structure, RNA molecules present pairings within a sequence, which is called RNA secondary structure. Since its discovery, RNA secondary structure has drawn considerable attention because it is widely appeared. Many programs for RNA secondary structure prediction have been developed, including [4, 20, 38, 39, 46]. Based on our knowledge, however, there is a family of RNA secondary structure which can not be covered by any of these algorithms. And even without considering this family, none of programs can cover all other structures in Rfam data-set. These structures are found to be important in many biological processes, for example, chromosome maintenance, RNA processing, protein biosynthesis. And efficient structure prediction can give direction for experimental investigations. Here, we present a general algorithm with a new grammar: Vertical Tree Grammar (VTG) which has stochastic context-free grammar architecture for RNA secondary structure prediction. VTG significantly expands the class of structures that can be handled, including all structures that can be covered by other paper, and all structures in Rfam data-set. Our algorithm runs in O(n^6) time, and it's precision is reasonable high, with average sensitivity and specificity over 70%. / published_or_final_version / Computer Science / Master / Master of Philosophy
225

Workflows for identifying differentially expressed small RNAs and detection of low copy repeats in human

Liu, Xuan, 刘璇 January 2014 (has links)
With the rapid development of next-generation sequencing NGS technology, we are able to investigate various aspects biological problems, including genome and transcriptome sequencing, genomic structural variation and the mechanism of regulatory small RNAs, etc. An enormous number of associated computational methods have been proposed to study the biological problems using NGS reads, at a low cost of expense and time. Regulatory small RNAs and genomic structure variations are two main problems that we have studied. In the area of regulatory small RNA, various computational tools have been designed from the prediction of small RNA to target prediction. Regulatory small RNAs play essential roles in plants and bacteria such as in responses to environmental stresses. We focused on sRNAs that in act by base pairing with target mRNA in complementarity. A comprehensive analysis workflow that is able to integrate sRNA-Seq and RNA-Seq analysis and generate regulatory network haven't been designed yet. Thus, we proposed and implemented two small RNA analysis workflow for plants and bacteria respectively. In the area of genomic structural variations (SV), two types of disease-related SVs have been investigated, including complex low copy repeats (LCRs, also termed as segmental duplications) and tandem duplication (TD). LCRs provide structural basis to form a combination of other SVs which may in turn lead to some serious genetic diseases and TDs of specific areas have been reported for patients. Locating LCRs and TDs in human genome can help researchers to further interrogate the mechanism of related diseases. Therefore, we proposed two computational methods to predict novel LCRs and TDs in human genome. / published_or_final_version / Computer Science / Doctoral / Doctor of Philosophy
226

Structural studies of ribosomal RNA based on cross-analysis of comparative models and three-dimensional crystal structures

Lee, Jung Chull 28 August 2008 (has links)
Not available / text
227

Influenza virus polymerases: determination of the cap binding site and the crucial role of CA endonuclease cleavage site in the cap snatching mechanism for the initiation of viral messenger RNA synthesis

Rao, Ping 28 August 2008 (has links)
Not available / text
228

Structural studies of a group I intron splicing factor and a continuous three-dimensional DNA lattice

Paukstelis, Paul John 28 August 2008 (has links)
Not available / text
229

Distinct roles for the 5' and 3' untranslated regions in the degradation and stability of chloroplast tufA mRNA

Zicker, Alicia A. 28 August 2008 (has links)
Not available / text
230

MRNA degradation in the control of gene expression in yeast

Brown, Justin Travis 17 March 2011 (has links)
Not available / text

Page generated in 0.034 seconds