Spelling suggestions: "subject:"[een] RNA"" "subject:"[enn] RNA""
421 |
Regulation of the histidine operon and of ribonucleic acid synthesis in Salmonella typhimurium.Bahramian, Mohamad Bahman January 1971 (has links)
No description available.
|
422 |
Global mapping of RNA-RNA interactions in \(Salmonella\) via RIL-seq / Globale Analyse der RNA-RNA-Interaktionen in \(Salmonella\) mittels RIL-seqMatera, Gianluca January 2022 (has links) (PDF)
RNA represents one of the most abundant macromolecules in both eukaryotic and prokaryotic cells. Since the discovery that RNA could play important gene regulatory functions in the physiology of a cell, small regulatory RNAs (sRNAs) have been at the center of molecular biology studies. Functional sRNAs can be independently transcribed or derived from processing of mRNAs and other non-coding regions and they often associate with RNA-binding proteins (RBPs). Ever since the two major bacterial RBPs, Hfq and ProQ, were identified, the way we approach the identification and characterization of sRNAs has drastically changed. Initially, a single sRNA was annotated and its function studied with the use of low-throughput biochemical techniques. However, the development of RNA-seq techniques over the last decades allowed for a broader identification of sRNAs and their functions. The process of studying a sRNA mainly focuses on the characterization of its interacting RNA partner(s) and the consequences of this binding. By using RNA interaction by ligation and sequencing (RIL-seq), the present thesis aimed at a high-throughput mapping of the Hfq-mediated RNA-RNA network in the major human pathogen Salmonella enterica.
RIL-seq was at first performed in early stationary phase growing bacteria, which enabled the identification of ~1,800 unique interactions. In- depth analysis of such complex network was performed with the aid of a newly implemented RIL-seq browser. The interactome revealed known and new interactions involving sRNAs and genes part of the envelope regulon. A deeper investigation led to the identification of a new RNA sponge of the MicF sRNA, namely OppX, involved in establishing a cross-talk between the permeability at the outer membrane and the transport capacity at the periplasm and the inner membrane. Additionally, RIL-seq was applied to Salmonella enterica grown in SPI-2 medium, a condition that mimicks the intracellular lifestyle of this pathogen, and finally extended to in vivo conditions during macrophage infection. Collectively, the results obtained in the present thesis helped unveiling the complexity of such RNA networks.
This work set the basis for the discovery of new mechanisms of RNA-based regulation, for the identification of a new physiological role of RNA sponges and finally provided the first resource of RNA interactions during infection conditions in a major human pathogen. / RNA ist eines der am häufigsten vorkommenden Makromoleküle sowohl in eukaryontischen als auch in prokaryontischen Zellen. Seit der Entdeckung, dass RNA wichtige genregulatorische Funktionen in der Physiologie einer Zelle spielen könnte, stehen kleine regulatorische RNAs (sRNAs) im Mittelpunkt molekularbiologischer Studien. Funktionelle sRNAs können alleinstehend von nicht-codierenden oder codierenden Bereichen des Genoms transkribiert werden, aber sie können auch durch die Prozessierung einer mRNA entstehen. Des Weiteren sind sRNAs häufig mit RNA- bindenden Proteinen (RBPs) assoziiert. Seitdem die beiden wichtigsten bakteriellen RBPs, Hfq und ProQ, identifiziert wurden, hat sich die Art und Weise, wie wir an die Identifizierung und Charakterisierung von sRNAs herangehen, drastisch verändert. Ursprünglich wurden sRNAs annotiert und anschließend für einzelne sRNAs die Funktion mit biochemischen Techniken untersucht. Die Entwicklung von RNA-seq-Techniken in den letzten Jahrzehnten ermöglichte nun jedoch eine globale Identifizierung von sRNAs und ihren Funktionen. Der Prozess der Untersuchung einer sRNA konzentriert sich hauptsächlich auf die Charakterisierung ihrer interagierenden RNA-Partner und die Folgen dieser Bindung. Mit Hilfe der RNA-Interaktion durch Ligation und Sequenzierung (RIL-seq) wurde in der vorliegenden Arbeit eine Hochdurchsatzkartierung des Hfq-vermittelten RNA-RNA-Netzwerks in dem wichtigen humanen Krankheitserreger Salmonella enterica durchgeführt.
RIL-seq wurde zunächst in Bakterien in der frühen stationären Wachstumsphase durchgeführt, was die Identifizierung von ~1.800 einzigartigen Interaktionen ermöglichte. Mit Hilfe eines neu implementierten RIL-seq-Browsers wurde daraufhin eine eingehende Analyse dieses komplexen Netzwerks durchgeführt. Das Interaktom enthüllte bekannte und neue Interaktionen zwischen sRNAs und mRNAs, die Teil des Zellwand-Regulons sind. Eine tiefergehende Untersuchung führte zur Identifizierung eines neuen RNA-Schwammes, OppX, welcher mit der sRNA MicF bindet und so die Herstellung eines Cross-Talks zwischen der Permeabilität an der äußeren Membran und der Transportkapazität am Periplasma und der inneren Membran ermöglicht. Darüber hinaus wurde RIL-seq für Salmonella enterica angewandt, welche in SPI-2-Medium gewachsen waren, wobei diese Bedingung, die den intrazellulären Lebensstil dieses Erregers nachahmt. Durch die Infektion von Makrophagen mit dem Bakterium, wurde das RIL-seq Protokoll des Weiteren unter in vivo Bedingungen getestet. Insgesamt trugen die in dieser Arbeit erzielten Ergebnisse dazu bei, die Komplexität solcher RNA- Netzwerke zu enthüllen. Diese Arbeit bildete die Grundlage für die Entdeckung neuer Mechanismen der RNA-basierten Regulierung als auch für die Identifizierung einer neuen physiologischen Rolle von RNA- Schwämmen und lieferte letztendlich die erste Untersuchung für RNA- Interaktionen unter Infektionsbedingungen in einem wichtigen menschlichen Krankheitserreger.
|
423 |
The application of nucleic acid interaction structure predictionNewman, Tara 26 August 2022 (has links)
Motivation: Understanding how nucleic acids interact is essential for understanding their function. Controlling these interactions, for example, can allow us to detect diseases and create new therapeutics. During quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, having nucleic acids interact as designed is essential for ensuring accurate test results. Accurate testing is an important consideration during the detection of COVID-19, the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Results: I introduced the program DinoKnot (Duplex Interaction of Nucleic acids with pseudoKnots) that follows the hierarchical folding hypothesis to predict the secondary structure of two interacting nucleic acid strands (DNA/RNA) of similar or different type. DinoKnot is the first program that utilizes stable stems in both strands as a guide to find the structure of their interaction. Using DinoKnot, I predicted the interaction structure between the SARS-CoV-2 genome and nine reverse primers from qRT-PCR primer-probe sets. I compared these results to an existing tool RNAcofold and highlighted an example to showcase DinoKnot’s ability to predict pseudoknotted structures. I investigated how mutations to the SARS-CoV-2 genome may affect the primer interaction and predicted three mutations that may prevent primer binding, reducing the ability for SARS-CoV-2 detection. Interaction structure results pre- dicted by DinoKnot that showed disruption of primer binding were consistent with a clinical example showing detection issues due to mutations. DinoKnot has the potential to screen new SARS-CoV-2 variants for possible detection issues and support existing applications involving DNA/RNA interactions, such as microRNA (miRNA) target site prediction, by adding structural considerations to the interaction to elicit functional information. / Graduate
|
424 |
Development and Evaluation of a Fluorescent Activated Droplet Sorting Regulatory Assay for Ribosomal Cis-Regulatory RNAs:Gray, Elizabeth Catherine January 2022 (has links)
Thesis advisor: Michelle M. Meyer / Existing methods of assaying the function of cis-regulatory RNAs come with significant drawbacks when assaying large RNA libraries. Highly sensitive cell-based assays such as the β galactosidase assay are labor intensive, difficult to scale up and may lose sensitivity with increased throughput. GFP and luciferase reporters can be used with FACS to increase assay throughput, but sorting small bacterial cells is challenging and greatly reduces assay sensitivity. Conversely, in vitro methods allow for fast screening of very large RNA libraries, but only select for properties of binding, not regulation. By combining the principles of classic in cell regulatory assays with modern tools, cis-regulatory RNAs can be quickly screened for regulatory activity at a large scale. The assay under development, Fluorescent Activated Droplet Sorting Regulatory Assay (FADSRA), uses microfluidics to encapsulate single cells expressing a fluorescent protein under the control of a cis-regulatory RNA. These cells are then cultured into microcolonies within the droplets, which are subsequently sorted according to fluorescent signal. Deep amplicon sequencing of the regulatory RNAs can then reveal which sequences can regulate and which cannot. Thus, FADSRA can help bridge the gap between in vitro RNA binding and gene regulation assays, providing a way to answer sophisticated questions about cis-regulatory RNAs requiring high-throughput assay methods.
While many applications for FADSRA are possible, such as verifying regulatory activity of in vitro binders or screening synthetic regulators, one such application of FASDRA is the creation of fitness landscapes that probe sequence-function relationships of RNA cis-regulators. This dissertation first develops and optimizes the regulatory assay for ribosomal leaders in Chapter 2, following by creating a single mutant fitness landscape of the E. coli S15 leader RNA in Chapter 3. Results of this fitness landscape largely support previously published mutational studies and highlight the necessity of stable hairpin formation for regulation of the E. coli S15 leader. Chapter 4, examining the regulation of S15 protein and leader homologs, and Chapter 5, testing the adaptability of FADSRA to other cis-regulatory RNAs, examine possible further applications of the assay. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
|
425 |
Development of a System for Studying Temperature Adaptation of Structural RNASSweeney, Blake Alexander 22 November 2011 (has links)
No description available.
|
426 |
SL RNA and U6snRNA sequence requirements for nematodetrans-splicingYu, Yi-Tao January 1994 (has links)
No description available.
|
427 |
Control of retroviral translation and relationship to genomic RNA packaging /Butsch, Melinda Sue. January 2002 (has links)
No description available.
|
428 |
Control of Retroviral Translation and Relationship to Genomic RNA PackagingButsch, Melinda Sue 11 September 2002 (has links)
No description available.
|
429 |
Identification and characterization of YNL187, a novel factor that promotes stable association of the U1 SNRNP with the 5’SS during pre-messenger RNA splicingHage, Rosemary 10 December 2007 (has links)
No description available.
|
430 |
Control mechanisms of mRNA expression : nuclear poly(A) metabolism and dihydrofolate reductase mRNA expression /Hendrickson, Sidney Lloyd January 1980 (has links)
No description available.
|
Page generated in 0.0335 seconds