• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 767
  • 229
  • 138
  • 95
  • 30
  • 29
  • 19
  • 16
  • 14
  • 10
  • 7
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1615
  • 591
  • 342
  • 248
  • 246
  • 235
  • 191
  • 187
  • 177
  • 169
  • 168
  • 160
  • 143
  • 135
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
781

Predictors of Robust Sport Confidence in Collegiate Athletes

Morrison, Deanna Kay 21 July 2017 (has links)
No description available.
782

Adaptive Robust Regression Approaches in data analysis and their Applications

Zhang, Zongjun January 2015 (has links)
No description available.
783

Robust Bayes in Hierarchical Modeling and Empirical BayesAnalysis in Multivariate Estimation

Wang, Xiaomu January 2015 (has links)
No description available.
784

Robust Nonlinear Estimation and Control of Clutch-to-Clutch Shifts

Mishra, Kirti D. 08 June 2016 (has links)
No description available.
785

Cascade Control of a Hydraulic Prosthetic Knee

Hui, Xin 04 April 2016 (has links)
No description available.
786

Mass movement mechanism for nonlinear, robust and adaptive control of flexible structures

Muenst, Gerhard January 2001 (has links)
No description available.
787

Essays on model uncertainty in macroeconomics

Zhao, Mingjun 12 September 2006 (has links)
No description available.
788

Global-Local Hybrid Classification Ensembles: Robust Performance with a Reduced Complexity

Baumgartner, Dustin 16 June 2009 (has links)
No description available.
789

Robust Predictive Control for Legged Locomotion

Pandala, Abhishek-Goud 11 January 2024 (has links)
This dissertation aims to realize the goal of developing robust control solutions that can enable legged robots to navigate complex unknown environments. The idea of creating articulated-legged machines that can mimic animal locomotion has fueled the imagination of many researchers. These legged robots are designed to assist humans in their day-to-day tasks and challenging scenarios such as monitoring remote, inhospitable environments, disaster response, and other dangerous environments. Despite several decades of research, legged robots have yet to reach the dexterity or dynamic stability needed for real-world deployments. A fundamental gap exists in the understanding and development of reliable and scalable algorithms required for the real-time planning and control of legged robots. The overarching goal of this thesis is to formally develop computationally tractable, robust controllers based on nonlinear hybrid systems theory, model predictive control, and optimization for the real-time planning and control of agile locomotion in quadrupedal robots. Toward this objective, this thesis first investigates layered control architectures. In particular, we propose a two-level hierarchical control architecture in which the higher level is based on a reduced-order model predictive control (MPC), and the lower level is based on a full-order quadratic programming (QP) based virtual constraints controller. Specifically, two MPC architectures are explored: 1) An event-based MPC scheme that generates the optimal center of mass (COM) trajectories using a reduced-order linear inverted pendulum (LIP) model, and 2) A time-based MPC scheme that computes the optimal COM and ground reaction forces (GRF) using the reduced-order single rigid body (SRB) dynamics model. The optimal COM trajectories in the event-based MPC and the optimal COM trajectories, along with the ground reaction forces in the time-based MPC, are then tracked by the low-level virtual constraints controller. The event-based MPC scheme is numerically validated on the Vision 60 platform in a physics-based simulation environment. It has significantly reduced the computational burden associated with real-time planning-based MPC schemes. However, owing to the quasi-static nature of the optimal trajectories generated by the LIP model, we explored a time-based MPC scheme using Single Rigid Body Dynamics. This time-based MPC scheme is also numerically validated using the mathematical model of the A1 quadrupedal robot. Most MPC schemes use a reduced-order model to generate optimal trajectories. However, the abstraction and unmodeled dynamics in template models significantly increase the gap between reduced- and full-order models, limiting the robot's full scope and potential. In the second part of the thesis, we aim to develop a computationally tractable robust model predictive control (RMPC) scheme based on convex QPs to bridge this gap. The RMPC framework considers the single rigid body model subject to a set of unmodeled dynamics and plans for the optimal reduced-order trajectory and GRFs. The generated optimal GRFs of the high-level RMPC are then mapped to the full-order model using a low-level nonlinear controller based on virtual constraints and QP. The key innovation of the proposed RMPC framework is that it allows the integration of the hierarchical controller with Reinforcement Learning (RL) techniques to train a neural network to compute the vertices of the uncertainty set numerically. The proposed hierarchical control algorithm is validated numerically and experimentally for robust and blind locomotion of the A1 quadrupedal robot on different indoor and outdoor terrains and at different speeds. The numerical analysis of the RMPC suggests significant improvement in the performance of the rough terrain locomotion compared to the nominal MPC. In particular, the proposed RMPC algorithm outperforms the nominal MPC by over 60% during rough terrain locomotion over 550 uneven terrains. Our experimental studies also indicate a significant reduction in the gap between the reduced full-order models by comparing the desired and actual GRFs. Finally, the last part of the thesis presents a formal approach for synthesizing robust $mathcal{H}_2$- and $mathcal{H}_infty$-optimal MPCs to stabilize the periodic locomotion of legged robots. The proposed algorithm builds on the existing optimization-based control stack. We outline the set of conditions under which the closed-loop nonlinear dynamics around a periodic orbit can be transformed into a linear time-invariant (LTI) system using Floquet theory. We then outline an approach to systematically generate parameterized $mathcal{H}_2$- and $mathcal{H}_infty$- robust controllers using linear matrix inequalities (LMIs). We subsequently established a set of conditions guaranteeing the existence of such robust optimal controllers. The proposed $mathcal{H}_2$- and $mathcal{H}_infty$-optimal MPCs are extensively validated both numerically and experimentally for the robust locomotion of the A1 quadrupedal robot subject to various external disturbances and uneven terrains. Our numerical analysis suggests a significant improvement in the performance of robust locomotion compared to the nominal MPC. / Doctor of Philosophy / Legged robots have always been envisioned to work alongside humans, assisting them in mundane day-to-day tasks to challenging scenarios such as monitoring remote locations, planetary exploration, and supporting relief programs in disaster situations. Furthermore, research into legged locomotion can aid in designing and developing powered prosthetic limbs and exoskeletons. With these advantages in mind, several researchers have created sophisticated-legged robots and even more complicated algorithms to control them. Despite this, a significant gap exists between the agility, mobility, and dynamic stability shown by the existing legged robots and their biological counterparts. To work alongside humans, legged robots have to interact with complex environments and deal with uncertainties in the form of unplanned contacts and unknown terrains. Developing robust control solutions to accommodate disturbances explicitly marks the first step towards safe and reliable real-world deployment of legged robots. Toward this objective, this thesis aims to establish a formal foundation to develop computationally tractable robust controllers for the real-time planning and control of legged robots. Initial investigations in this thesis report on the use of layered control architectures, specifically event-based and time-based Model Predictive Control(MPC) schemes. These layered control architectures consist of an MPC scheme built around a reduced-order model at the high level and a virtual constraints-based nonlinear controller at the low level. Using these layered control architectures, this thesis proposed two robust control solutions to improve the rough terrain locomotion of legged robots. The first proposed robust control solution aims to mitigate one of the issues of layered control architecture. In particular, layered control architectures rely on a reduced order model at the high level to remain computationally tractable. However, the approximation of fullorder models with reduced-order models limits the full scope and potential of the robot. The proposed algorithm aims to bridge the gap between reduced- and full-order models with the integration of model-free Reinforcement Learning (RL) techniques. The second algorithm proposes a formal approach to generate robust optimal control solutions that can explicitly accommodate the disturbances and stabilize periodic legged locomotion. Under some mild conditions, the MPC control solution is analyzed, and an auxiliary feedback control solution that can handle disturbances explicitly is proposed. The thesis also theoretically establishes the sufficient conditions for the existence of such controllers. Both the proposed control solutions are extensively validated using numerical simulations and experiments using an A1 quadrupedal robot as a representative example.
790

Tensorial Data Low-Rank Decomposition on Multi-dimensional Image Data Processing

Luo, Qilun 01 August 2022 (has links)
How to handle large multi-dimensional datasets such as hyperspectral images and video information both efficiently and effectively plays an important role in big-data processing. The characteristics of tensor low-rank decomposition in recent years demonstrate the importance of capturing the tensor structure adequately which usually yields efficacious approaches. In this dissertation, we first aim to explore the tensor singular value decomposition (t-SVD) with the nonconvex regularization on the multi-view subspace clustering (MSC) problem, then develop two new tensor decomposition models with the Bayesian inference framework on the tensor completion and tensor robust principal component analysis (TRPCA) and tensor completion (TC) problems. Specifically, the following developments for multi-dimensional datasets under the mathematical tensor framework will be addressed. (1) By utilizing the t-SVD proposed by Kilmer et al. \cite{kilmer2013third}, we unify the Hyper-Laplacian (HL) and exclusive $\ell_{2,1}$ (L21) regularization with Tensor Log-Determinant Rank Minimization (TLD) to identify data clusters from the multiple views' inherent information. Whereby the HL regularization maintains the local geometrical structure that makes the estimation prune to nonlinearities, and the mixed $\ell_{2,1}$ and $\ell_{1,2}$ regularization provides the joint sparsity within-cluster as well as the exclusive sparsity between-cluster. Furthermore, a log-determinant function is used as a tighter tensor rank approximation to discriminate the dimension of features. (2) By considering a tube as an atom of a third-order tensor and constructing a data-driven learning dictionary from the observed noisy data along the tubes of a tensor, we develop a Bayesian dictionary learning model with tensor tubal transformed factorization to identify the underlying low-tubal-rank structure of the tensor substantially with the data-adaptive dictionary for the TRPCA problem. With the defined page-wise operators, an efficient variational Bayesian dictionary learning algorithm is established for TPRCA that enables to update of the posterior distributions along the third dimension simultaneously. (3) With the defined matrix outer product into the tensor decomposition process, we present a new decomposition model for a third-order tensor. The fundamental idea is to decompose tensors mathematically in a compact manner as much as possible. By incorporating the framework of Bayesian probabilistic inference, the new tensor decomposition model on the subtle matrix outer product (BPMOP) is developed for the TC and TRPCA problems. Extensive experiments on synthetic data and real-world datasets are conducted for the multi-view clustering, TC, and TRPCA problems to demonstrate the desirable effectiveness of the proposed approaches, by detailed comparison with currently available results in the literature.

Page generated in 0.0447 seconds