Spelling suggestions: "subject:"[een] ROCK MECHANICS"" "subject:"[enn] ROCK MECHANICS""
151 |
Thermal cracking in nonporous geothermal reservoirsBarr, David Thomas January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by David Thomas Barr. / M.S.
|
152 |
Numerical analysis of hydraulic fracturing and related crack problemsPetersen, Donald Ralph January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Donald Ralph Petersen. / M.S.
|
153 |
Impact of wettability on two-phase flow in oil/water/carbonate rock systemsChristensen, Magali January 2018 (has links)
Two-phase flow, ubiquitous to waterflood oil recovery, geological CO2 storage, and groundwater remediation, is strongly influenced by wettability, and made more complex under mixed-wet conditions. Optimum wettability for such operations is not well established due to limited experimental data and difficulties in their interpretation. This thesis investigates the impact of mixed-wettability, characterised by advancing contact angle θa on capillary pressure, relative permeability, and waterflood displacement. Using a Darcy scale simulator, relative permeability kr, capillary pressure Pc, and residual oil saturation Sor were extracted by history matching production and pressure drop data from centrifuge brine invasion and waterflood displacements completed for a range of θa. As θa increased, a larger |Pc| was required to displace oil from mixed-wet cores at high initial oil saturation. End point oil and brine permeability decreased with increasing θa. A permeability enhancement, such that kr > 1, was measured both when the flowing phase was wetting and non-wetting and was attributed to a slippage at the oil/brine interface directly correlated to θa. Residual oil saturation decreased monotonically with increasing θa while core-averaged remaining oil saturation at the end of the waterflood exhibited a non-monotonic dependence on θa. Simulations of the waterfloods revealed that both significant capillary end effects and premature termination of the waterflood in the laboratory contribute to the deviation between remaining and residual saturations. This work demonstrates that the former is not representative of the latter, as it has been assumed in a number of studies in the literature. Both corefloods and microfluidic waterfloods show the importance of combining experimental studies with simulation for correct interpretation of the measurements especially under capillary dominated flow.
|
154 |
Design of regional pillars for the Khuseleka Ore Replacement Project (KORP) - UG2Mutsvanga, Clarence January 2017 (has links)
A research report submitted to the Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering, Johannesburg 2017 / Depletion of mineral resources is a reality of mining. It is critical that as resources get depleted, new reserves are subsequently opened up continuously if a mine is to continue operating. Failure to open up new reserves will result in a mining operation running out of reserves and ultimately ceasing operations. Besides the economic considerations of an ore reserve such as the grade and tonnage, stability of the mining operation is of equal importance. A mine should remain stable for the entire period that it remains operational.
Pillars play a critical role in ensuring the stability of an excavation; actually, regional pillars ensure the overall stability of a mine. It therefore goes without saying, pillar design is an integral component of any successful mine design.
This project was undertaken with the objective of ensuring that the new reserves being opened up in the Khuseleka Ore Replacement Project (KORP) section are not only profitable, but also stable. This was done through
a) maximisation of extraction ratio, thereby maximising the mines’ profitability.
b) designing the regional pillar layout for the KORP section using current empirical and numerical pillar design methods and comparing the results to come up with the most optimal design.
c) ensuring the stability of the on and off reef mine infrastructure by determining the Rockwall Condition Factor (RCF) values on the footwall infrastructure due to pillars left above and thus prevent damage to these excavations through stress induced failures. Consideration was given to the standard Khuseleka footwall infrastructure layouts for the design based on the planning department’s layout of haulages and crosscuts for the KORP section. The layout of the footwall excavations indicated that the pillars would be differently sized thereby having an influence on the APS, pillar strength and factors of safety of the regional pillars.
d) numerical modelling analysis of the effects of leaving stabilizing pillars on the 27 raise line where the haulages intersect the reef horizon.
The methodology employed for this undertaking involved a critical literature review of existing pillar design methods, applying and comparing them, and coming up with an economic and safe design.
To be able to design a pillar layout that met the objectives listed above, engineering design principles had to be applied. It involved gathering the relevant geological and geotechnical information required as input parameters for the different empirical and numerical analyses methods.
What came out from this project was that each method employed yielded its own set of results. This highlighted the need to understand the context under which a design is carried out and the shortcomings of each method employed. It showed how important it is to have all the relevant information of not only the characteristics of the rock mass in which an excavation will be made, but also on the strengths and limitations of the tools available to design a structure. It highlighted the fact that to minimize uncertainty and have a more robust design, it was necessary to spend time and effort in gathering as much relevant data as possible. In the end engineering judgment was used to decide on the best method or system to employ in the design of the pillars. / XL2018
|
155 |
Initiation et propagation de la fracturation en milieu anisotrope avec prise en compte des couplages hydro-mécaniques / Initiation and propagation of fractures in anisotropic media, takin into account Hydro-Mechanical couplingsMoosavi, Sourena 07 December 2018 (has links)
L’accent mis actuellement par l’industrie pétrolière sur l’augmentation de l’efficacité des réservoirs, ainsi que sur l’intérêt grandissant pour l’exploitation d’autres sources d’énergie enfouies profondément sous terre a suscité un regain d’intérêt pour la mécanique de la fracturation des roches en général et la fracturation hydraulique en particulier. La fracturation hydraulique, appelée de manière informelle “fracturation”, est un processus qui consiste généralement à injecter de l’eau, sous haute pression dans une formation rocheuse via le puits. Ce processus vise à créer de nouvelles fractures dans la roche et à augmenter la taille, l’étendue et la connectivité des fractures existantes. Des avancées récentes dans la modélisation et la simulation de fractures hydrauliques ont eu lieu, au confluent de facteurs qui incluent une activité accrue, une tendance vers une complexité accrue et une compréhension approfondie du modèle mathématique sous-jacent et de ses défis intrinsèques. Cependant, certaines des caractéristiques très importantes de ce processus ont été négligées. Parmi les caractéristiques négligées, on peut citer l’incapacité de la grande majorité des modèles existants de s’attaquer à la fois à la propagation de fractures hydrauliques dans la roche intacte, à l’inititation de nouvelles fractures ainsi qu’à la réactivation des fractures existantes. Une autre caractéristique qui a été ignorée est sa dimension intrinsèque en trois dimensions, négligée par la plupart des modèles actuallement proposés. Parmi tous les différents types de méthodes numériques développées pour évaluer le mécanisme du phénomène de fracturation, très peu sont capables de représenter la totalité des mecanismes mis en jeu. Dans la présente thèse, l’initiation et la propagation de fissures induites par les fluides dans des roches isotropes transversales sont simulées à l’aide d’un modèle hydromécanique (HM) couplé basé la méthode XFEM (eXtended Finite Element Method) et un modèle de zones cohésives. Le HM-XFEM développé dans cette thèse est une extension des modèles précédemment développés dans l’équipe hydro-géomécanique multi échelle de GeoRessources. L’accent a été porté plus particulièrement sur la prise en compte de l’anisotropie du milieu et sur son influence sur le chemin de propagation. Ce dernier est défini à partir du le concept d’angle de bifurcation introduit auparavant dans la littérature. En complément des développements réalisés dans le modèle HM-XFEM, effort a été fait pour mieux comprendre l’initiation de la fissure en utilisant la méthode des éléments discrets (DEM) à l’aide du logiciel open source YADE Open DEM. La nature différente des deux méthodes, DEM étant une méthode discontinue et XFEM, une méthode continue, révèle les potentiels des deux méthodes et permet de comparer correctement la méthode qui convient le mieux au problème à résoudre, compte tenu des objectifs de la conception / Current emphasis in petroleom industry toward increasing the reservoirs efficiency, along with the interest in exploitation of other sources of energy buried deep underground created a renewed interest in rock fracture mechanics in general and hydraulic fracturing specifically. Hydraulic fracturing, informally referred to as “fracking,” is an oil and gas well development process that typically involves injecting water, under high pressure into a bedrock formation via the well. This process is intended to create new fractures in the rock as well as increase the size, extent, and connectivity of existing fractures. However some of the very important features of this process have been overlooked. Among these neglected features one can name of inability of the vast majority of existing models to tackle at once the propagation of hydraulic fractures in fractured rocks-masses where a competing dipole mechanism exists between fracturing of the intact rock and re-activation of exiting fracture networks. Another feature that has been ignored is its intrinsically three dimensionality which is neglected by most models. Among all different types of numerical methods that have been developed in order to assess the mechanism of fracturing phenomenon very few, if any, can handle the entire complexity of such process. In the present thesis, fluid-driven crack initiation and propagation in transverse isotropic rocks is simulated using a coupled model comprising of eXtended Finite Element Method (XFEM) and cohesive zone models. The HM XFEM developed in this thesis is an extension to previous models developed introduced in multiscale hydrogeomechanics team of GeoRessources. An emphasis is put on considering the anisotropic nature of the medium and on studying its influence on the propagation path. This latter is investigated by the concept of bifurcation angle previously introduced in literature. In complementary efforts was made to have a better understanding of crack initiation in transversely isotropic media, we also used the discrete element method (DEM) in order to gain insights into the mechanisms at stake. Both methods exhibit their advantages and disadvantages in modeling fracturing phenomenon. The different nature of two methods, DEM being a discontinuous and XFEM being a continuous method, reveals potentials of both methods and renders a good comparison of which method suits the problem in hand the best, considering the the objectives of the design
|
156 |
Development of a laboratory facility for testing shear performance of installed rock reinforcement elementsMahony, Luke T, School of Mining, UNSW January 2006 (has links)
Rock reinforcing elements provide a significant proportion of their ground control capability through offering resistance to shear movement of adjacent rock masses or blocks. This potential shear movement may take the form of sliding on horizontal bedding planes leading to strata bending; or block displacement along other geological structures such as joints or similar discontinuities. Much has been reported about this type of behaviour of rock bolts and other tendons, in theoretical concepts. However, there is a shortage of quality data available on the exact nature of this mechanism for shear resistance, and the role played by parameters such as pre-tensioning. A clearer understanding of the nature and significance of this type of behaviour has major implications for rock reinforcing materials and installation design. This thesis, which was supported by the Australian Coal Research Program (ACARP) describes the design, construction and commissioning of a laboratory testing facility at the School of Mining Engineering, University of New South Wales (UNSW), Australia and a subsequent testing program. The single failure plane design adopted in the test rig has been successful in allowing shear loading to be directly applied to fully installed rockbolts. Rockbolts were installed into an offset concrete rockmass, which consisted of two separate concrete samples that created a smooth shear plane surface. The reinforced samples were subjected to an applied shear load and critical parameters such as load and shear displacement were recorded. Influencing parameters such as concrete strength and applied pre-tension were altered and recorded to determine their effects on the overall shear performance of the sample. The failure mode of the rockbolts was also examined. The results indicate that a relative stronger rockmass material caused the rockbolt to fail within a lower shear displacement compared to a relatively weaker material. Also, a pre-tensioned rockbolt tended to resist shear displacement at least initially, until high shear loads developed. This phenomena is beneficial to ground support as less movement would tend to maintain integral strength of the rockmass. The use of strain-gauged rockbolts indicated as would be expected that the shear loading arrangement induced a compressive axial loading that tended to dissipate with distance from the shear surface.
|
157 |
Du coccolithe au réservoir pétrolier - Approche phénoménologique du comportement mécanique de la craie en vue de sa modélisation à différentes échellesSchroeder, Christian 31 January 2002 (has links)
La thèse se présente comme un bilan de plus de 25 ans de fréquentation de la craie, dans divers domaines, principalement dans le domaine pétrolier.
La phénoménologie du comportement de ce matériau atypique craie est présentée dans ses divers contextes, dans une optique pluridisciplinaire.
Le mémoire comprend quatre parties principales :
-la première partie concerne la craie en elle-même: sa constitution, sa répartition stratigraphique et géographique, sa structure, ses propriétés physiques et pétrophysiques générales;
-la deuxième partie pose les problèmes des réservoirs pétroliers de Mer du Nord;
-la troisième partie, la plus volumineuse, aborde le comportement mécanique de la craie comme roche réservoir;
-la quatrième partie expose certains développements en cours et considère les perspectives de développements futurs.
|
158 |
Fracture toughness determination and micromechanics of rock under Mode I and Mode II loadingBackers, Tobias January 2004 (has links)
This thesis work describes a new experimental method for the determination of Mode II (shear) fracture toughness, KIIC of rock and compares the outcome to results from Mode I (tensile) fracture toughness, KIC, testing using the International Society of Rock Mechanics Chevron-Bend method.<br><br>Critical Mode I fracture growth at ambient conditions was studied by carrying out a series of experiments on a sandstone at different loading rates. The mechanical and microstructural data show that time- and loading rate dependent crack growth occurs in the test material at constant energy requirement.<br><br>The newly developed set-up for determination of the Mode II fracture toughness is called the Punch-Through Shear test. Notches were drilled to the end surfaces of core samples. An axial load punches down the central cylinder introducing a shear load in the remaining rock bridge. To the mantle of the cores a confining pressure may be applied. The application of confining pressure favours the growth of Mode II fractures as large pressures suppress the growth of tensile cracks.<br><br>Variation of geometrical parameters leads to an optimisation of the PTS- geometry. Increase of normal load on the shear zone increases KIIC bi-linear. High slope is observed at low confining pressures; at pressures above 30 MPa low slope increase is evident. The maximum confining pressure applied is 70 MPa. The evolution of fracturing and its change with confining pressure is described.<br><br>The existence of Mode II fracture in rock is a matter of debate in the literature. Comparison of the results from Mode I and Mode II testing, mainly regarding the resulting fracture pattern, and correlation analysis of KIC and KIIC to physico-mechanical parameters emphasised the differences between the response of rock to Mode I and Mode II loading. On the microscale, neither the fractures resulting from Mode I the Mode II loading are pure mode fractures. On macroscopic scale, Mode I and Mode II do exist. / Diese Arbeit beschreibt eine neue experimentelle Methode zur Bestimmung der Modus II (Schub) Bruchzähigkeit, KIIC, von Gestein und vergleicht die Ergebnisse mit Resultaten aus Versuchen zur Bestimmung der Modus I (Zug) Bruchzähigkeit, KIC.<br><br>An einer Serie von Versuchen mit verschiedenen Belastungsraten wurde das kritische Modus I Rißwachstum eines Sandsteines untersucht. Die mechanischen Daten zeigen, daß zeit- und belastungsratenabhängiges Rißwachstum in dem Material bei konstantem Energieverbrauch stattfindet. <br><br>Der neu entwickelte Versuchsaufbau zur Ermittlung der Modus II Bruchzähigkeit wurde Punch- Through Shear Test genannt. Die Proben werden aus Bohrkernen hergestellt in deren Endflächen Nuten eingebracht werden. Eine Last auf den Innenzylinder induziert eine Schubspannung. Auf die Mantelfläche der Proben kann ein Umlagerungsdruck aufgebracht werden. Da durch Normalspannungen das Modus I Rißwachstum unterdrückt wird, wird das Modus II Rißwachstum gefördert.<br><br>Die PTS- Probengeometrie wurde bezüglich Nutentiefe, -durchmessers, -breite und des Probendurchmessers optimiert. KIIC steigt bi-linear mit Zunahme des Umlagerungsdruckes an. Ein starker Anstieg ist bis zu Umlagerungsdrücken von etwa 30 MPa zu beobachten, oberhalb ist die Steigung geringer. Bisher wurden Umlagerungsdrücke bis maximal 70 MPa aufgebracht. Die Entwicklung der entstehenden Risse und deren Variation mit Umlagerungsdruck wird beschrieben.<br><br>Ob die Entstehung eines Modus II Risses in Gestein möglich ist, wurde vielfach in der Literatur diskutiert. Der Vergleich der Ergebnisse der Modus I und II Experimente, insbesondere bezüglich der Rißmuster und der Korrelationsanalysen von KIC und KIIC zu physiko-mechanischen Parametern, zeigt die Unterschiede der Reaktion auf Modus I und Modus II Belastung auf. Mikroskopisch gesehen wachsen die Risse weder unter Modus I noch unter Modus II Belastung in einem reinen Modus. Allerdings existieren Modus I und Modus II Risse auf der makroskopischen Betrachtungsebene.
|
159 |
Quantitative Characterization of Natural Rock Discontinuity Roughness In-situ and in the LaboratoryTatone, Bryan Stanley Anthony 16 February 2010 (has links)
The surface roughness of unfilled rock discontinuities has a major influence on the hydro-mechanical behaviour of discontinuous rock masses. Although it is widely recognized that surface roughness is comprised of large-scale (waviness) and small-scale (unevenness) components, most investigations of surface roughness have been restricted to small fracture
surfaces (<1m2). Hence, the large-scale components of roughness are often neglected.
Furthermore, these investigations typically define roughness using two-dimensional profiles rather than three-dimensional surfaces, which can lead to biased estimates of roughness.
These limitations have led to some contradictory findings regarding roughness scale effects. This thesis aims to resolve some of these issues. The main findings indicate that
discontinuity roughness increases as a function of the sampling window size contrary to what is commonly assumed. More importantly, it is shown that the estimated roughness significantly decreases as the resolution of surface measurements decrease, which could lead to the under estimations of roughness and, consequently, discontinuity shear strength.
|
160 |
Thermoporoelastic Effects of Drilling Fluid Temperature on Rock Drillability at Bit/Formation InterfaceThepchatri, Kritatee 1984- 14 March 2013 (has links)
A drilling operation leads to thermal disturbances in the near-wellbore stress, which is an important cause of many undesired incidents in well drilling. A major cause of this thermal disturbance is the temperature difference between the drilling fluid and the downhole formation. It is critical for drilling engineers to understand this thermal impact to optimize their drilling plans.
This thesis develops a numerical model using partially coupled thermoporoelasticity to study the effects of the temperature difference between the drilling fluid and formation in a drilling operation. This study focuses on the thermal impacts at the bit/formation interface. The model applies the finite-difference method for the pore pressure and temperature solutions, and the finite-element method for the deformation and stress solutions. However, the model also provides the thermoporoelastic effects at the wellbore wall, which involves wellbore fractures and wellbore instability.
The simulation results show pronounced effects of the drilling fluid temperature on near-wellbore stresses. At the bottomhole area, a cool drilling fluid reduces the radial and tangential effective stresses in formation, whereas the vertical effective stress increases. The outcome is a possible enhancement in the drilling rate of the drill bit. At the wellbore wall, the cool drilling fluid reduces the vertical and tangential effective stresses but raises the radial effective stress. The result is a lower wellbore fracture gradient; however, it benefits formation stability and prevents wellbore collapse. Conversely, the simulation gives opposite induced stress results to the cooling cases when the drilling fluid is hotter than the formation.
|
Page generated in 0.2503 seconds