• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 458
  • 336
  • 88
  • 64
  • 50
  • 20
  • 14
  • 13
  • 10
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 1270
  • 687
  • 250
  • 162
  • 97
  • 91
  • 73
  • 72
  • 67
  • 67
  • 64
  • 64
  • 63
  • 62
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Development of methodology for detection of defect locations in pavement profile

Rawool, Shubham Shivaji 29 August 2005 (has links)
Pavement smoothness has become a standard measure of pavement quality. Transportation agencies strive to build and maintain smoother pavements. Smooth roads provide comfort while riding, minimize vehicular wear and tear and increase pavement life. A user perceives smoothness of a pavement based on the ride quality, which is severely affected by presence of defects on pavement surface. Defects identified after construction are corrected as per smoothness specifications prescribed by respective transportation agencies. The effectiveness of any method used to determine defect locations depends on the decrease in roughness obtained on correction of defects. Following the above line of thought a method that detects defects by comparing original profile to a smoothened profile will be more effective in identifying defect locations that cause roughness in pavements. This research report proposes a methodology to detect defect locations on pavement surface using profile data collected on pavements. The approach presents a method of obtaining a smoothened profile from the original profile to help identify defect locations based on deviations of the original profile from the smoothened one. Defect areas will have a higher deviation from the smoothened profile as compared to smooth areas. The verification of the defects identified by this approach is carried out by determining the decrease in roughness after removal of the identified defects from profile. A roughness statistic is used to do the same. The approach is illustrated using profile data collected on in-service pavement sections.
122

Forced Hydraulic Jump On Artificially Roughened Beds

Simsek, Cagdas 01 January 2007 (has links) (PDF)
In the scope of the study, prismatic roughness elements with different longitudinal spacing and arrangements have been tested in a rectangular flume in order to reveal their effects on fundamental characteristics of a hydraulic jump. Two basic roughness types with altering arrangements have been tested. Roughness elements of the first type extends through the channel width against the flow with varying length and pitch ratios for different arrangements. The second type is of staggered essence and produced by piecing the roughness elements defined in the initial type into three parts which are equal in length. The doublet formed from the pieces on the sides is shifted to the consequent row to make two successive roughness rows encapsulate the channel span completely. Staggered roughness type is formed with the repetition of this arrangement along the flume. Independent of their type and arrangement, the entirety of roughness elements are embedded in the channel bed in order to avoid their protuberance into the flow, based on the presumption that the crests of the roughness elements levelled with the channel inlet would be less exposed to caving effects of flow than the protruding elements. In the study, influence of the proposed roughness elements on the fundamental engineering concerns as the length, height (tail water depth) and energy dissipation capacity of hydraulic jumps has been questioned in the light of empirical work and related literature on forced and smooth hydraulic jumps. At the final stage of the study, it was concluded that both strip and staggered roughness have positive effects on the characteristics of hydraulic jump given above. 3-7% more energy dissipation was observed in jumps on rough beds compared to classical hydraulic jumps. For tailwater dept reduction, whereas strip roughness provided 5-13%, staggered roughness led to 7-15% tailwater depth reduction compared to classical hydraulic jump. While strip roughness reduced jump length around 40%, 35-55% reduction was observed with staggered roughness when compared to classical hydraulic jump.
123

Development of methodology for detection of defect locations in pavement profile

Rawool, Shubham Shivaji 29 August 2005 (has links)
Pavement smoothness has become a standard measure of pavement quality. Transportation agencies strive to build and maintain smoother pavements. Smooth roads provide comfort while riding, minimize vehicular wear and tear and increase pavement life. A user perceives smoothness of a pavement based on the ride quality, which is severely affected by presence of defects on pavement surface. Defects identified after construction are corrected as per smoothness specifications prescribed by respective transportation agencies. The effectiveness of any method used to determine defect locations depends on the decrease in roughness obtained on correction of defects. Following the above line of thought a method that detects defects by comparing original profile to a smoothened profile will be more effective in identifying defect locations that cause roughness in pavements. This research report proposes a methodology to detect defect locations on pavement surface using profile data collected on pavements. The approach presents a method of obtaining a smoothened profile from the original profile to help identify defect locations based on deviations of the original profile from the smoothened one. Defect areas will have a higher deviation from the smoothened profile as compared to smooth areas. The verification of the defects identified by this approach is carried out by determining the decrease in roughness after removal of the identified defects from profile. A roughness statistic is used to do the same. The approach is illustrated using profile data collected on in-service pavement sections.
124

Optimization of Superhydrophobic Surfaces to Maintain Continuous Dropwise Condensation

Vandadi, Aref 05 1900 (has links)
In the past decade, the condensation on superhydrophobic surfaces has been investigated abundantly to achieve dropwise condensation. There is not a specific approach in choosing the size of the roughness of the superhydrophobic surfaces and it was mostly selected arbitrarily to investigate the behavior of condensates on these surfaces. In this research, we are optimizing the size of the roughness of the superhydrophobic surface in order to achieve dropwise condensation. By minimizing the resistances toward the transition of the tails of droplets from the cavities of the roughness to the top of the roughness, the size of the roughness is optimized. It is shown that by decreasing the size of the roughness of the superhydrophobic surface, the resistances toward the transition of the tails of droplets from Wenzel state to Cassie state decrease and consequently dropwise condensation becomes more likely.
125

The Influence of Surface Roughness and Its Geometry on Dynamic Behavior of Water Droplets

Sadeghpour, Nima. 12 1900 (has links)
In this study the author reports the effects of surface roughness on dynamic behavior of water droplets on different types of rough structures. First, the influence of roughness geometry on the Wenzel/ Cassie-Baxter transition of water droplets on one-tier (solid substrates with Si micropillars) surfaces is studied (Chapter 3). In order to address distinct wetting behaviors of the advancing and receding motions, the author investigates the Wenzel/ Cassie-Baxter transition of water droplets on one-tier surfaces over a wide range of contact line velocities and droplet volumes in both advancing and receding movements. The discussions are strengthened by experimental results. According to the author’s analysis, the advancing contact zone tends to follow the Cassie-Baxter behavior for a wider range of geometric ratios than the receding contact zone. Physical phenomena such as advancing contact line rolling mechanism and the pinning of the receding contact line are introduced to justify distinct transition points of the advancing and receding movements respectively. Based on the analysis provided in Chapter 3, the author experimentally investigates the contact line fluctuations and contact line friction coefficients of water droplets on smooth, one-tier, and two-tier (with carbon nanotubes (CNTs) grown on Si micropillars) surfaces in Chapters 4 and 5. Both the advancing and receding contact line fluctuations/friction coefficients have been measured, analyzed and compared on smooth, one-tier, and two-tier surfaces over a wide range of contact line velocities and droplet volumes. A comprehensive analysis is provided to explain the experimental observations.
126

Roughness Induced Transition

Ergin, Fahrettin Gökhan 01 August 2005 (has links)
No description available.
127

Airport pavement roughness evaluation through aircraft dynamic response / Avaliação da irregularidade longitudinal de pavimentos aeroportuários através da resposta dinâmica das aeronaves

Cossío Durán, Jorge Braulio 25 February 2019 (has links)
Airport pavements and longitudinal elevation profiles, in conjunction with the aircraft, form a system where vertical displacements are produced that can compromise their performance. Rough pavements are generally responsible for the occurrence of dynamic responses such as vertical accelerations and pavement loads that affect the aircraft, increase stopping distance and difficult to read the cockpit instrumentation. To approach this problem, the International Roughness Index (IRI) and the Boeing Bump Index (BBI) are currently used to quantify airport pavement roughness and to identify sections that need maintenance and rehabilitation (M&R) activities. However, such indices were developed only based on the dynamic responses of an automobile at 80 km/h to the irregularities of road pavements, and from the physical characteristics of the irregularities, respectively, without considering the effect of the aircraft dynamic response. In addition, current critical limits for IRI and BBI can misjudge the real condition of the pavement. This research aims to evaluate the effect of airport pavement roughness on aircraft dynamic response in terms of vertical accelerations at the aircraft cockpit (VACP) and at the center of gravity (VACG), as well of dynamic loads at the nose, main and rear landing gear (NGPL, MGPL, and RGPL), which may compromise the aircraft safety and the pavement performance. The ProFAA software was used to compute both indices and to simulate the responses of 4 representative aircraft traversing 20 runway profiles at 10 operational speeds varying from 20 to 200 knots (37 to 370 km/h). Statistical comparisons and regression analyses between roughness indices and dynamic responses were carried out. Principal results indicated that VACP was 50% higher than VACG and that NGPL was approximately 80% higher than MGPL. In addition, it was observed that VACP exceeds 0.40 g when the IRI is higher than 3.7 m/km and that NGPL doubles the static load when the IRI is higher than 3.3 m/km. A case study presented to compare these limits shown that decision-making based on the dynamic response of the aircraft can bring significant differences in the number and quality of M&R activities. / Os pavimentos aeroportuários e os perfis de elevação longitudinal, em conjunto com as aeronaves, formam um sistema onde são produzidos deslocamentos verticais que podem comprometer seu desempenho. Pavimentos irregulares são geralmente responsáveis pela ocorrência de respostas dinâmicas como acelerações verticais e carregamentos no pavimento que podem danificar a aeronave, aumentar a distância de parada e dificultar a leitura dos instrumentos de navegação na cabine dos pilotos. Para abordar esse problema, os índices International Roughness Index (IRI) e Boeing Bump Index (BBI) são utilizados atualmente para quantificar a irregularidade longitudinal dos pavimentos aeroportuários e identificar seções que demandem atividades de manutenção e reabilitação (M&R). No entanto, tais índices foram desenvolvidos apenas com base nas respostas dinâmicas de um automóvel a 80 km/h às irregularidades dos pavimentos rodoviários e a partir das características físicas das irregularidades, respectivamente, sem considerar o efeito da resposta dinâmica das aeronaves. Ainda, os limites críticos atuais para IRI e BBI podem subestimar a condição real do pavimento. Esta pesquisa objetiva avaliar o efeito da irregularidade longitudinal na resposta dinâmica das aeronaves em termos de acelerações verticais na cabine dos pilotos (VACP) e no centro de gravidade (VACG) assim como os carregamentos no trem de pouso de nariz, principal e traseiro (NGPL, MGPL e RGPL, respectivamente), que podem comprometer a segurança das aeronaves e o desempenho do pavimento. O software ProFAA foi utilizado para calcular os dois índices e para simular as respostas de 4 aeronaves representativas operando 20 pistas de pouso e decolagem em 10 velocidades de operação variando de 20 a 200 nós (37 a 370 km/h). Comparações estatísticas e análises de regressão entre índices e respostas dinâmicas foram realizadas. Os principais resultados indicaram que VACP foi 50% maior do que VACG e que NGPL foi aproximadamente 80% maior do que MGPL. Além disso, observou-se que VACP ultrapassa 0,40 g quando o IRI está acima de 3,7 m/km e que NGPL dobra a carga estática quando o IRI está acima de 3,3 m/km. Um estudo de caso apresentado para comparar esses limites indicou que a tomada de decisão baseada na resposta dinâmica das aeronaves pode trazer diferenças significativas na quantidade e qualidade das atividades de M&R.
128

Generation, Characterization and Control of Nanoscale Surface Roughness

Pendyala, Prashant January 2014 (has links) (PDF)
Surface roughness exists at many length scales-from atomic dimensions to meters. At sub-micron scale, the distribution of roughness is largely dependent on the process that generates the surface through the mechanisms of material removal/addition involved and the process parameters. The focus of the research is to quantitatively characterize the evolution of sub-micron scale surface roughness in the mechanical, chemical and electrochemical material removal techniques and study the influence of roughness on the mechanical behavior of surfaces. High purity aluminum surfaces are subjected to surface dissolution techniques such as electropolishing, chemical etching and anodization. Owing to the lack of sufficient lateral resolution in conventional roughness measurement techniques and appropriate scale independent roughness characterization techniques, the effect sub-micron scale electrochemical inhomogeneities present on the surfaces have on the roughness evolution at various length scales has not been understood. In this work, the power spectral density method of roughness characterization is used to quantitatively evaluate the roughness length scales affected in the surface generation processes as a function of time. Results indicate that in the case of electropolishing, roughness is not uniformly reduced at all length scales. Further, cut-off frequencies are suggested to optimize the electropolishing process. In chemical etching, the nature of roughness produced is found to be dependent on the nature of the starting surface. The nature of surface and sub-surface structures produced in the initial stage of the anodization process, and the transition from a disordered to an ordered structure are studied. In order to study the mechanical behavior of surfaces as a function of surface roughness, a single asperity indentation is modeled using nanoindentation of micropillar produced by focused ion beam machining of aluminum surfaces. Load-displacement curves are constructed to show the transition from a single asperity deformation to bulk deformation as function of indentation depth. Additionally, indentation responses of polymer coated surfaces with varying degree of roughness that were produced by the aforementioned surface generation processes are studied. it is shown how high interface roughness gives rise to high scatter both in loading and unloading portions of the load-displacement curves. Finally, porous alumina surface generated by the anodization process discussed above is indented to simulate a multi-asperity interaction.
129

A Framework for Enhancing the Accuracy of Ultra Precision Machining

Meyer, Paula Alexandra 07 1900 (has links)
This thesis is titled "A Framework for Enhancing the Accuracy of Ultra Precision Machining." In this thesis unwanted relative tool / workpiece vibration is identified as a major contributor to workpiece inaccuracy. The phenomenon is studied via in situ vibrational measurements during cutting and also by the analysis of the workpiece surface metrology of ultra precision diamond face turned aluminum 6061-T6. The manifestation of vibrations in the feed and in-feed directions of the workpiece was studied over a broadband of disturbance frequencies. It is found that the waviness error measured on the cut workpiece surface was significantly larger than that caused by the feed marks during cutting. Thus it was established that unwanted relative tool / workpiece vibrations are the dominant source of surface finish error in ultra precision machining. By deriving representative equations in the polar coordinate system, it was found that the vibrational pattern repeats itself, leading to what are referred to in this thesis as surface finish lobes. The surface finish lobes describe the waviness or form error associated with a particular frequency of unwanted relative tool / workpiece vibration, given a particular feed rate and spindle speed. With the surface finish lobes, the study of vibrations is both simplified and made more systematic. Knowing a priori the wavelength range caused by relative tool / workpiece vibration also allows one to extract considerable vibration content information from a small white light interferometry field of view. It was demonstrated analytically that the error caused by relative tool / workpiece vibration is always distinct from the surface roughness caused by the feed rate. It was also shown that the relative tool / workpiece vibration-induced wavelength in the feed direction has a limited and repeating range. Additionally, multiple disturbance frequencies can produce the same error wavelength on the workpiece surface. Since the meaningful error wavelength range is finite given the size of the part and repeating, study then focussed on this small and manageable range of wavelengths. This range of wavelengths in turn encompasses a broadband range of possible disturbance frequencies, due to the repetition described by the surface finish lobes. Over this finite range of wavelengths, for different machining conditions, the magnitude of the waviness error resulting on the cut workpiece surface was compared with the actual relative tool / workpiece vibrational magnitude itself. It was found that several opportunities occur in ultra precision machining to mitigate the vibrational effect on the workpiece surface. The first opportunity depends only on the feed rate and spindle speed. Essentially, it is possible to force the wavelength resulting from an unwanted relative tool / workpiece vibration to a near infinite length, thus eliminating its effect in the workpiece feed direction. Further, for a given disturbance frequency, various speed and feed rate combinations are capable of producing this effect. However, this possibility exists only when a single, dominant and fixed disturbance frequency is present in the process. By considering the tool nose geometry, depth of cut, and vibrational amplitude over the surface finish lobe finite range, it was found that the cutting parameters exhibit an attenuating or filtering effect on vibrations. Thus, cutting parameters serve to mitigate the vibrational effect on the finished workpiece over certain wavelengths. The filter curves associated with various feed rates were compared. These filter curves describe the magnitude of error on the ultra precision face turned workpiece surface compared with the original unwanted tool / workpiece vibrational magnitude. It was demonstrated with experimental data that these filter curves are physically evident on the ultra precision diamond face turned workpiece surface. It was further shown that the surface roughness on the workpiece surface caused by the feed rate was reduced with relative tool / workpiece vibrations, and in some cases the feed mark wavelength was changed altogether. Mean arithmetic surface roughness curves were also constructed, and the filtering phenomenon was demonstrated over a broadband of disturbance frequencies. It is well established that a decrease in the feed rate reduces the surface roughness in machining. However, it was demonstrated that the improved surface finish observed with a slower feed rate in ultra precision diamond face turning was actually because it more effectively mitigated the vibrational effect on the workpiece surface over a broadband of disturbance frequencies. Experimental findings validated this observation. By only considering the effect of vibrations on the surface finish waviness error, it was shown that the workpiece diamond face turned with a feed rate of 2 {tm / rev has a mean arithmetic surface roughness, Ra , that was 43 per cent smaller than when a feed rate of 10 μm / rev was used. / Thesis / Doctor of Philosophy (PhD)
130

A composite manufacturing process for producing class A finished components / Zelldra Lombard

Lombard, Zelldra January 2014 (has links)
The purpose of this study was to develop a composite manufacturing process that would be able to deliver Class A surface finished products in the context of mould manufacturing methods. The problem required solving was to overcome the time needed to prepare Class A surfaces, by developing a composite manufacturing process that will deliver Class A surface finished products straight from the mould. The process was aimed at the entire development process, from mould and plug design up to the finished product. A literature study and a factory mould survey were conducted with a view to obtain the necessary insights into surface finishing and composite manufacturing. These surveys were followed by seven constructional tests which determined the most appropriate solutions for the proposed manufacturing processes. Test 1 was used to determine a quality finish standard for composites from the sanding grits used to finished composite surfaces versus surface roughness values used in other industries. The standard determined that a P800 finish has a roughness between 0.200 and 0.150 um and constitutes a Class A3 finish. P1000 to P1200 have a roughness between 0.150 um to 0.100 um and constitutes a Class A2 finish. Finally a P2000 and higher have a roughness of 0.100 um and lower and constitutes Class A1 surface finish. After the standard was set, the tests for finishing of the moulds, plugs and parts commenced. Test 2 was conducted on the CNC manufacturing of plugs out of Nuceron651 tooling board. Tool path parameters were varied in a matrix. The samples with the best surface finish value were cut with a step-over of 0.5 and feed of 800 mm/min. These parameters were found to be the most influential. Test 2 and 4 revealed that the plug surface finishing should commence with conventional 2K paint finishing, with a possibility of acrylic split surface. This process produced projected mould surfaces between 0.150 um and 0.200 um, which can be categorised as Class A-3. Test 5 and 6 determined methods for improving the mould surface quality and durability. It was established that the tooling gelcoat should be applied whilst being heated and backed with at least two layers of glass veil and a steady increase of GSM of structural glass fibres to prevent print-through. Test 3 determined that the mould corners could be strengthened with rovings pressed into the corner. It was also established that the moulds surfaces will require finishing after demoulding. The final moulds were manufactured from a fibreglass composite structure with tooling gelcoat surface. A number of guidelines and a set process were developed in order to produce moulds with a surface finish of average 0.9 um, equivalent to Class A1. Release agents were tested in Test 7, and the Loctite Frekote 770-NC release system was deemed appropriate for use with In Mould Coating (IMC) of 2K Paint. These elements were all synthesised into plug, mould and part manufacturing processes. The proposed processes were validated by the manufacturing of a JS instrument panel, which delivered a Class A2, 0.175 um, finish with IMC of 2K paint. With only a minor sanding of P3000 grit and polishing, the part was made into a Class A1 surface, measured at 0.63 um. The study proved that it is possible to produce Class A finished part with IMC. This method can provide a solution aimed at the elimination of P600 and lower finishing of composite parts manufactured with IMC. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0323 seconds