• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 39
  • 33
  • 21
  • 15
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 400
  • 158
  • 62
  • 61
  • 37
  • 36
  • 33
  • 32
  • 31
  • 28
  • 24
  • 24
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Detecting incised valley-fill sandstone in Beauchamp field by using seismic attributes, Stanton County, USA

Almalki, Saad Abdullah January 1900 (has links)
Master of Science / Department of Geology / Matthew W. Totten / A 3D seismic survey was conducted on Beauchamp, Beauchamp North and Beauchamp Northwest fields, which are located in Stanton County, southwest Kansas, by Berexco, Inc. Stanton County is situated on the Hugoton embayment which is the shelf of the Anadarko basin. The producing formation in this area is the Morrow formation, which is the lower Pennsylvanian period. The Morrow formation is mostly a clastic unit and its base was transgressive marine. It is considered an unconformity lying on the Mississippian rocks. Wide geologists agreed with the name of Morrow as name in the rock stratigraphic sequence in the study area (Forgotson, et al., 1966). "The Morrowan series is defined as the interval between the base of the Atokan Thirteen finger limestones and the top of the pre-Pennsylvanian unconformity" (Puckette, et al., 1996). The depositional environment of upper Morrow Formation in western Kansas, according to Sonnenberg (1985), Krystinik et al (1990), was a valley-fill deposit. The purpose of this study is to focus on detecting valley-fill sandstone in the study area by using appropriate seismic attributes. Coherence and discontinuity along dip succeeded to map incised valley-fill sandstone width. On another hand, spectral decomposition displayed subtle changes in incised valley thickness. Positive curvature shows valley edges in moderate resolution, but the most negative curvature wasn't clear enough to display the valley-fill sand. The result of RMS amplitude and average energy attributes results were almost the same. They exhibited four areas of high amplitude and energy in the valley which may indicate the presence of hydrocarbon. Sweetness and envelope amplitude both detected the valley in the study area. A gamma ray cross section shows that there are sequences of incised valley-fill sandstone which are sandstone A, B, C and D of the upper Morrow formation. Johns 2-12 well is producing oil from lower Morrow and sandstone A, thus the valley in the study area may produce oil from Sandstone A or B as RMS amplitude and average energy showing high amplitude in four areas in the valley.
122

Da carstificação em arenitos. Aproximação com o suporte de geotecnologias = À propos de la karstfication dans les grès. Traitement par les technologies SIG /

Hardt, Rubens. January 2011 (has links)
Orientador: Sérgio dos Anjos Ferreira Pinto / Coorientador: Joël Georges Marie Andre Rodet / Banca: Fabiano Tomazini da Conceição / Banca: Augusto Sarreiro Auler / Banca: Francisco Sergio Bernardes Ladeira / Banca: Benoit Laignel / Banca: Anne-Veronique Walter-Simonnet / Banca: Luc Denis Mathieu Willens / Em regime de cotutela de tese com a "Université de Rouen" - Docteur en Géologie (França) / Resumo: A carstificação dos arenitos já foi considerado um tema polêmico no passado, mas nas últimas décadas, vem sendo cada vez mais aceito pela comunidade de pesquisadores do carste. No Brasil, uma ampla área do território possui afloramentos de arenitos e meta-arenitos, e o clima tropical, com abundância de chuva e vegetação, associado a presença de matéria orgânica, óxidos de ferro, sais e longo tempo de exposição às intempéries, entre outros elementos, permitem uma aceleração do processo de intemperismo químico do quartzo, produzindo uma ampla variedade de formas cársticas, além de uma organização espacial, permitindo-se falar em Sistemas Cársticos em Arenitos. Visando a comparação e a caracterização da morfologia cárstica e dos sistemas cársticos nesta litologia, quatro áreas foram estudadas com maior grau de detalhamento, bem como outras áreas foram visitadas, com a ideia de fornecer subsídios comparativos na compreensão dos processos e organização, através do estudo das formas. As áreas estudadas foram a Serra de Itaqueri; a Chapada dos Guimarães, e a região dos Campos Gerais, no Brasil, e a região da Forêt de Fontainebleau, na França. Conseguiu-se, com isso, demonstrar a natureza cárstica das formas de relevo encontradas, entender a organização destas formas na paisagem e sua integração sistêmica, e fornecer subsídios para a formulação de hipóteses dos processos envolvidos na estruturação de tais formas e sistemas, sobretudo da importância da cobertura vegetal, como auxiliar na dissolução do quartzo, e do processo de "fantomização" da rocha (alteração "in situ") e posterior remoção, por dissolução completa ou mecanicamente, da matéria alterada, resultando em formas e sistemas cársticos... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Karstification of sandstone was considered a controversial topic in the past, but has become increasingly accepted by karst researchers in recent decades. A large area of Brazil's territory has sandstone and metasandstone outcrops. The country's tropical climate, abundant rainfall and vegetation, allied to the presence of organic matter, iron oxides, salts and long weathering processes, among other factors, accelerate the chemical weathering of quartz. This combination of factors has produced a wide variety of karst landforms, as well as a spatial organization, that allows them to be referred to as Sandstone Karst Systems. Four areas were studied in great detail to compare and characterize the karst morphology and karst systems in this lithology. In addition, other areas were visited to collect comparative data to help shed further light on geological processes and the organization of landforms. The areas under study were Serra de Itaqueri, the Chapada dos Guimarães, and the region of Campos Gerais in Brazil, and the region of Forêt de Fontainebleau in France. This study allowed for the determination of the karst topography and an understanding of the organization of these landscape processes and their systemic integration. The knowledge thus gained served to underpin the formulation of hypotheses about the processes involved in the structuring of these landforms and systems, and above all the importance of vegetation as an aid for quartz dissolution, and about the process of rock phantomization (in situ alteration) and subsequent removal of modified material by complete dissolution or by mechanical means, resulting in karst landforms and systems. The aforementioned hypotheses served as the basis for a proposal to amend the definition of karst with respect to the term... (Complete abstract click electronic access below) / Résumé: L'existence de karsts dans les grès a été longtemps sujette à controverse, mais est de plus en plus acceptée depuis les dernières décennies par les karstologues. Le sous-sol d'une grande partie du territoire brésilien se constitue de grès et de métagrès. Des pluies abondantes, un couvert végétal et une matière organique abondante liés au climat tropical caractérisant majoritairement le pays, la présence d'oxydes de fer et de périodes d'érosion physicochimique prolongées ont favorisé l'altération chimique des quartz. Cette combinaison de facteurs a produit une grande variété de reliefs karstiques, ainsi que leur organisation sous la forme de systèmes karstiques gréseux. Quatre zones ont été étudiées en détail afin de comparer et de caractériser la morphologie karstique et les systèmes karstiques dans cette lithologie. Au Brésil, il s'agit de la Serra d'Itaqueri, de la Chapada dos Guimarães et de la région de Campos Gerais. En France, nous avons examiné les morphologies associées aux grès de la forêt de Fontainebleau. En outre, d'autres sites ont été visités afin de recueillir des données comparatives permettant une meilleure compréhension des processus morphogénétiques et de l'organisation des reliefs. Cette étude démontre la nature karstique des formes rencontrées et apporte une meilleure compréhension à leur intégration dans les paysages et leur intégration systémique. Les connaissances ainsi acquises autorisent la formulation d'une série d'hypothèses sur les processus impliqués dans la structuration de ces reliefs et des systèmes karstiques. L'influence de la végétation est soulignée, notamment comme... (Résumé complet accès életronique cidessous) / Doutor
123

Padrões da autigênese de clorita e sua influência sobre a qualidade de reservatório dos arenitos cretácicos da Bacia de Santos

Bahlis, Andrea Bressani January 2011 (has links)
Arenitos do Cretáceo Superior da Bacia de Santos correspondem aos principais reservatórios clásticos de hidrocarbonetos da bacia, localizada na margem leste brasileira. Alguns desses arenitos exibem porosidades anormalmente altas, considerando suas atuais profundidades maiores que 4000 m. A preservação da porosidade nesses arenitos, assim como em diversos outros reservatórios clásticos profundos vem sendo atribuída à inibição da cimentação por crescimentos de quartzo e da dissolução por pressão exercida por franjas e cutículas de clorita autigênica. Por esse motivo, o estudo da distribuição espacial e temporal das cloritas, assim como de seus hábitos, relações paragenéticas e condições genéticas, é de grande importância. Os arenitos cretácicos de Santos são arcósios e arcósios líticos, ricos em fragmentos de rochas vulcânicas (FRV). Clorita é o constituinte diagenético mais abundante, ocorrendo principalmente como franjas e cutículas cobrindo os grãos (pore-lining), rosetas preenchendo parcialmente os poros e agregados microcristalinos substituindo grãos. A precipitação de clorita foi favorecida pela presença de cutículas eogenéticas de argila esmectítica, que foram parcialmente preservadas ao longo de contatos intergranulares apertados. Além disso, a composição primária dos arenitos exerceu um controle fundamental na autigênese das cloritas. O enriquecimento de clorita nos arenitos arcósios líticos, ricos em FRV, sugere que esses grãos são uma significativa fonte de íons de Fe e Mg para a precipitação de clorita nesses arenitos. Além dos FRV, minerais pesados instáveis, biotita e intraclastos lamosos atuaram como fonte e/ou substrato para a autigênese da clorita. Adicionalmente à composição primária, a história térmica e de soterramento, assim como o padrão de fluxo de fluidos, certamente tiveram um papel importante na distribuição da diagênese da clorita e na evolução da qualidade dos reservatórios. Prováveis fontes externas de íons devem ter envolvido as reações de transformações de argilominerais esmectíticos em lutitos associados, e a espessa seção de evaporitos Aptianos. Os diferentes hábitos das cloritas exerceram impacto distinto na qualidade dos reservatórios. Cloritas pore-lining inibiram a cimentação por quartzo, isolando as superfícies dos grãos de quartzo e reduzindo a nucleação de crescimentos secundários, contribuindo assim para a preservação da porosidade. No entanto, franjas e cutículas finas e descontínuas não foram capazes de inibir efetivamente a cimentação por quartzo, enquanto que as muito espessas reduziram severamente a permeabilidade dos reservatórios. Rosetas de clorita, por sua vez, não inibiram a cimentação de quartzo e ainda reduziram a porosidade intergranular. Estudos específicos são necessários para um melhor entendimento dos diferentes processos diagenéticos nos arenitos da Bacia de Santos, assim como de sua distribuição temporal, estratigráfica e espacial, de modo a basear o desenvolvimento de modelos que possam efetivamente contribuir para a redução dos riscos durante a exploração por esses reservatórios. / Upper Cretaceous sandstones from the Santos Basin, eastern Brazilian Margin, correspond to the main clastic hydrocarbon reservoirs of the basin. Some of these sandstones show abnormally high porosities, considering their present depths larger than 4000 m. The preservation of porosity in these sandstones, as in other deep clastic reservoirs, has been ascribed to the inhibition of quartz overgrowth cementation and pressure dissolution by rims and coatings of authigenic chlorite. Therefore, the study of the space and time distribution of the chlorites, as well as of their habits, paragenetic relations and genetic conditions, is of great importance. Santos cretaceous sandstones are arkoses and lithic arkoses, rich in volcanic rock fragments (VRF). Chlorite is the most abundant diagenetic constituent, occurring mostly as rims and coatings covering the grains (pore-lining), as rosettes partially filling the pores, and as grain-replacive microcrystalline aggregates. Chlorite precipitation was favored by the presence of eogenetic coatings of smectitic clays, which were partially preserved along tight intergranular contacts. Besides these, the primary composition of the sandstones exerted a key control in chlorite authigenesis. Chlorite enrichment in the lithic arkoses, rich in VRF, suggests that these grains are significant source of Fe and Mg ions for chlorite precipitation in these sandstones. Besides VRF, unstable heavy minerals, biotite and mud intraclasts acted as source or substrate for chlorite authigenesis. In addition to the primary composition, thermal and burial histories, as also the fluid flow patterns, certainly played an important role in chlorite diagenesis and in the evolution of reservoir quality. Probable external ionic sources must have involved the transformation of smectitic clays in associated mudrocks, and the thick section of Aptian evaporites. The diverse chlorite habits exerted distinct impact on the quality of the reservoirs. Pore-lining chlorites inhibited quartz cementation isolating quartz grains surfaces, reducing the nucleation of overgrowths, thus contributing to porosity preservation. However, thin and discontinuous rims and coatings were not able to effectively inhibit quartz cementation, while those very thick severely decreased the permeability of the reservoirs. In turn, chlorite rosettes have not inhibited quartz cementation, but have reduced intergranular porosity nonetheless. Specific studies are required for a better understanding of the diverse diagenetic processes wthin Santos Basin sandstones, as also of their time, stratigraphic and space distribution, in order to support the development of models that may effectively contribute to the reduction of risks during the exploration for these reservoirs.
124

Geological risk and reservoir quality in hydrocarbon exploration

Xia, Changyou January 2018 (has links)
In the next 20 years, the global demand for oil is forecast to grow by 0.7% every year, and the demand for natural gas will increase by 1.6% annually. But as we continue to produce oil and gas, the resources of our current oilfields are depleting. To meet the rising global energy demand, it is essential that we can keep discovering more petroleum resources in the future. The primary aim of this PhD project is to deepen our understanding of hydrocarbon reservoirs and enhance our ability to explore. The first project looked at the geological risks in hydrocarbon exploration. It reviewed and statistically analysed the data of 382 unsuccessful boreholes in the UK offshore area. The results suggest that the most significant risk for an exploration well is encountering a thin or absent target reservoir. This risk happened to 27 ± 4% of the past unsuccessful wells. The following most common risks are low-porosity reservoirs (22 ± 4% of all cases) and the lack of a closed trap (23 ± 4%). The probability of a target reservoir having a leaky caprock is 5 ± 2%. The study has calculated the probability of occurrence of all the geological risks in exploration, and this risk data can be applied to predict the potential geological risks in future exploration. One challenge in developing saline aquifers as CO2 storage reservoirs is the lack of subsurface data, unless a well has been drilled. Drawing on the experience of hydrocarbon exploration, a potential CO2 storage site identified on seismic profiles will be subject to many uncertainties, such as thin or low-porosity reservoirs, leaky seals, which are analogue to the geological risks of an undrilled hydrocarbon prospect. Since the workflow of locating CO2 storage reservoirs is similar to the exploration for hydrocarbon reservoirs, the risk data of hydrocarbon exploration wells can be applied to infer the geological risks of the exploration wells for CO2 storage reservoirs. Based on this assumption, the study of Chapter 3 estimated that the probability of a borehole encountering a reservoir suitable for CO2 storage is c. 41-57% (90% confidence interval). For reservoirs with stratigraphic traps within the UKCS, the probability of success is slightly lower, at 39 ± 10% (90% confidence). Chapter 4 studies the porosity and diagenetic process of the Middle Jurassic Pentland Formation in the North Sea. The analysis data come from 21 wells that drilled and cored the Pentland Formation. Petrographic data suggest the content of detrital illite is the most important factor affecting the porosity of the Pentland Sandstone - the porosities of the sandstones with more than 15% of illite (determined by point-count) are invariably low (< 10%). Quartz cement grows at an average rate of 2.3 %/km below the depth of 2km, and it is the main porosity occluding phase in the deep Pentland Sandstone. Petrographic data shows the clean, fine-grained sandstones contain the highest amount of quartz cement. Only 1-2 % of K-feldspar seems to have dissolved in the deep Pentland Sandstone (> 2 km), and petrographic data suggest that K-feldspar dissolution does not have any substantial influence on the sandstone porosity. There is no geochemical evidence for mass transfer between the sandstones and shales of the Pentland Formation. Chapter 5 investigates the high porosity of the Pentland Sandstone in the Kessog Field, Central North Sea. The upper part of the Kessog reservoir displays an anomalously high porosity (c. 25 %, helium porosity) that is 10 % higher than the porosity of other Pentland sandstones at the same depth (c. 15 %, 4.1 - 4.4 km). Petrographic data show these high porosities are predominantly primary porosity. The effects of sedimentary facies, grain coats, secondary porosity and overpressure on the formation of the high porosity are considered to be negligible in this case. Early hydrocarbon emplacement is the only explanation for the high porosity. In addition to less quartz cement, the high-porosity sandstones also contain more K-feldspar and less kaolin than the medium-porosity sandstones of the same field. This indicates that early hydrocarbon emplacement has also inhibited the replacement of K-feldspar. The last chapter studies the potential mass transfer of silica, aluminium, potassium, iron, magenesium and calcium at sandstone-shale contacts. The study samples include 18 groups of sandstones and shales that were collected from five oilfields in the North Sea. The interval space between the samples of each group varies from centimetres to meters. The research aim is to find evidence of mass transfer by studying the samples' variation of mineralogy and chemistry as a function of the distance to the nearest sandstone-shale contact. The sandstones are mostly turbidite sandstones, and the shales are Kimmeridge Clay shales. Petrographic, mineralogical and chemical data do not provide firm evidence for mass transfer within any group of the samples. The result indicates that the scale of mobility of silica, aluminium, potassium, iron, magenesium and calcium in the subsurface may be below the scale of detection of the study method, i.e. < 5 cm.
125

Petrology of the Late Proterozoic(?) - Early Cambrian Arumbera Sandstone and the Late Proterozoic Quandong Conglomerate, East-central Amadeus Basin, Central Australia

Phillips, Johnnie O. 01 May 1986 (has links)
Throughout the James Ranges and Gardiner Range the Arumbera Sandstone forms prominent strike ridges with distinctive dark reddish slopes and pale red to orange-white cliffs. Because of their lithologic and stratigraphic similarities, the names Eninta and ''Quandong" for these units should be suppressed in favor of the name of Arumbera Sandstone, which has precedence. The stratigraphic and lithologic differences observed between the Quandong Conglomerate in the type locality and the Arumbera Sandstone in the study area suggest that these units are not equivalent. Similarites with the Areyonga Formation suggest the Quandong Conglomerate could be part of the Areyonga Formation. Lithofacies la, ld, and 2b, and Unit 3 of the Arumbera and its equivalents are typically recessive arkoses, subarkose, and mudrocks. They are interpreted as nearshore-marine to coastal deltaic deposits which include intertonguing tidal-flat, tidal-channel, and beach sediments. Lithofacies 1b and 2a consist of cliff-forming arkoses, subarkoses, and lithic arkoses. Lithofacies 2c is also resistant, and consists of orthoconglomerates and conglomeratic sandstones. Lithofacies 1e is moderately resistant, and consists of paraconglomerates, conglomeratic sandstones, and mudrocks. It and lithofacies 2c contain pebbles and small cobbles of chert, quartzite, vein quartz, silicified ooids, and limestone, dolostone, shale, and sandstone. These four lithofacies are interpreted as braidplain and fluvial sheet sands. In the east-central part of the Amadeus Basin the Arumbera Sandstone probably was deposited in a coastal environment as a sequence of deltaic sediments that was dominated by fluvial processes. The Arumbera Sandstone appears to be the molasse derived from the Late Proterozoic and Early Cambrian Petermann Ranges orogeny. Source rocks include sedimentary, low- to middle-rank metamorphic, and plutonic granites. Grain mineralogy and weathering characteristics suggest a hot, semiarid climate during deposition of the Arumbera. The Arumbera Sandstone and Quandong Conglomerate contain fair to good porosity and permeability, and petrographic evidence shows mesogenetic generation of secondary porosity. Previous and present burial depths are adequate for the generation of petroleum. The presence of suitable underlying .source rocks, overlying salt of the Chandler for a seal, and stratigraphic and structural traps suggest a good potential for petroleum. Production of dry gas from the lower part of the Arumbera at Dingo field, north of Deep Well Homestead, confirms the petroleum potential of this formation.
126

Outcrop Studies of Soft-sediment Deformation Features in the Navajo Sandstone

Bryant, Gerald 05 January 2012 (has links)
In contrast to early work establishing the importance of earthquake-induced liquefaction in producing soft-sediment deformation (SSD) of the Navajo Sandstone, this report advances the use of SSD analysis to: characterize wet climatic conditions and flood events during the depositional history of ancient eolianites; discriminate the signatures of multiple deformation events from those of complex deformation features formed in a single event; and to document the occurrence of liquefaction features unrepresented in modern Earth analogues. The diversity of deformation styles, presented here, is very unusual in a report from a single formation; yet the high resolution of interpreted time relationships between various processes of deposition, erosion, water table fluctuation, and deformation is even more notable. These exceptional features derive from the extraordinary outcrops of the Colorado Plateau, which expose many large-scale (tens of meters) features throughout their entire extent and reveal an extended history of episodic deformation through thick (hundreds of meters) sections of cross-bedded units, which frequently continue along several kilometers of cliff face. Prior studies of fluid escape from unconsolidated sand that support the present work are outlined in Chapter II. These include laboratory simulations of liquefaction and fluidization as well as analyses of analogous deposits, both ancient and modern. Chapter III provides an overview of outcrop evidence, gathered during the course of this study, for dramatic alterations in the topography and sedimentation patterns of the Navajo erg. Interpreted perturbations include: the foundering of active dunes; sediment eruptions; and the subsidence of interdune surfaces. Chapter IV constitutes an example of the detailed analyses that support the overview of Chapter III. Outcrop features from a site in West Canyon, Arizona provide the basis for interpreting the subsidence of a dry interdune surface to a position several meters below the contemporary water table, followed by the filling of this depression with a succession of mass flow, lacustrine, and eolian deposits. Chapter V outlines the implications of various outcrop features for the prevailing model of soft-sediment deformation in the Navajo Sandstone. Proposed modifications of this model accommodate a broader range of deformation dynamics and specifically incorporate the impact of wet climates.
127

Outcrop Studies of Soft-sediment Deformation Features in the Navajo Sandstone

Bryant, Gerald 05 January 2012 (has links)
In contrast to early work establishing the importance of earthquake-induced liquefaction in producing soft-sediment deformation (SSD) of the Navajo Sandstone, this report advances the use of SSD analysis to: characterize wet climatic conditions and flood events during the depositional history of ancient eolianites; discriminate the signatures of multiple deformation events from those of complex deformation features formed in a single event; and to document the occurrence of liquefaction features unrepresented in modern Earth analogues. The diversity of deformation styles, presented here, is very unusual in a report from a single formation; yet the high resolution of interpreted time relationships between various processes of deposition, erosion, water table fluctuation, and deformation is even more notable. These exceptional features derive from the extraordinary outcrops of the Colorado Plateau, which expose many large-scale (tens of meters) features throughout their entire extent and reveal an extended history of episodic deformation through thick (hundreds of meters) sections of cross-bedded units, which frequently continue along several kilometers of cliff face. Prior studies of fluid escape from unconsolidated sand that support the present work are outlined in Chapter II. These include laboratory simulations of liquefaction and fluidization as well as analyses of analogous deposits, both ancient and modern. Chapter III provides an overview of outcrop evidence, gathered during the course of this study, for dramatic alterations in the topography and sedimentation patterns of the Navajo erg. Interpreted perturbations include: the foundering of active dunes; sediment eruptions; and the subsidence of interdune surfaces. Chapter IV constitutes an example of the detailed analyses that support the overview of Chapter III. Outcrop features from a site in West Canyon, Arizona provide the basis for interpreting the subsidence of a dry interdune surface to a position several meters below the contemporary water table, followed by the filling of this depression with a succession of mass flow, lacustrine, and eolian deposits. Chapter V outlines the implications of various outcrop features for the prevailing model of soft-sediment deformation in the Navajo Sandstone. Proposed modifications of this model accommodate a broader range of deformation dynamics and specifically incorporate the impact of wet climates.
128

Tidally influenced deposits of the Hickory Sandstone, Cambrian, Central Texas

Cornish, Frank Gary 24 June 2013 (has links)
The Hickory Sandstone Member of the Riley Formation is dominantly quartz sandstone up to 167 m thick which crops out in the Llano Uplift region of central Texas and dips away in all directions. It lies unconformably upon the irregular surface of the Precambrian Texas craton. The association of isopach thicks and thins over cratonic lows and highs demonstrates topographic control of Hickory deposition. Regional subsurface studies delineate the extent of the overlying Cap Mountain Limestone. Beyond the limits of the Cap Mountain, the Hickory grades into the Lion Mountain Sandstone laterally and vertically so that correlations are difficult. The six lithofacies of the Hickory Sandstone were deposited as nonbarred tidally-influenced or estuarine-related equivalents to deposits of Holocene environments. Outer estuarine tidal channel-shoal deposits display abundant channel fills of large-scale foresets, parallel bedded sandstone, and minor siltstone. Trilobite trackways (Cruziana) and resting traces (Rusophycus) occur in these deposits, associated with U-shape burrows (Diplocraterion and Corophioides). Deposits of open coast sandy tidal flats display upward-fining character, medium-to large-scale festoon crossbedding, abundant small-scale ripple bedforms of all types, and mudcracks. These deposits include the U-shape burrows, Corophiodes, and the trackway, Climactichnites. Deposits of inner estuarine tidal channels and tidal flats display upward-fining character, wavy-lenticular bedding, bimodal paleocurrent patterns, and the resting trace, Pelecypodichnus. All of these deposits prograded as a unit until sea level rise shut off sediment supply. Progradation of tidal channel and shoal sediments was renewed. These deposits are festoon crossbedded hematitic sandstone with wavy-lenticular bedding and abundant fossil debris. Storm energy funneled through tidal channels deposited crossbedded sandstone onto the nearshore inlet-influenced shelf. Final Hickory deposits and initial Cap Mountain deposits were storm-dominated, burrowed and laminated calcitic shelf sands. / text
129

Controls on ore deposition in the Lamotte Sandstone, Goose Creek mine, Indian Creek subdistrict, southeast Missouri / Lamotte Sandstone, Goose Creek Mine, Indian Creek subdistrict, southeast Missouri

Gutierrez, Gay Nell, 1955- 27 June 2013 (has links)
The Indian Creek subdistrict is the northernmost mineralized area in the Southeast Missouri district and is unique because ore-grade concentrations of sulfides occur within the Lamotte Sandstone. The Lamotte Sandstone-hosted Goose Creek mine is located on the northern end and the Bonneterre Dolomite-hosted Indian Creek mine on the northwestern side of a N30°E-trending, Precambrian rhyolite ridge. A saddle on the northern end of the ridge separates the Indian Creek subdistrict from another probable high along the same trend to the north. Lamotte deposition was influenced by pre-Lamotte basement topography, and local thickness ranges from 0 where it pinches out against the ridge to over 100 ft toward the basin. It is comprised of a thin, discontinuous basal cobble conglomerate overlain by a medium-grained, moderately to poorly sorted, well-rounded quanzarenite. Fourteen authigenic minerals, plus hydrocarbons cement the Lamotte Sandstone at Goose Creek in the following paragenetic sequence: dolomite - framboidal pyrite - marcasite - cuboctahedral pyrite - bravoite - bladed marcasite - pyrite - quartz dissolution - brecciation - siegenite - marcasite - dolomite - brecciation - chalcopyrite - quartz dissolution - sphalerite - galena (cuboctahedral) - quartz - galena (cubic) - dolomite - gypsum - hydrocarbon - kaolinite - illite - calcite - hydrocarbon. Primary and secondary porosity in the Lamotte vary between 1 and 20 volume percent and authigenic cements account for up to 35 volume percent of the sandstone. Quartz overgrowths are the most common cement in the Lamotte Sandstone at Goose Creek, comprising from 1 to 11 volume percent of the rock. Galena is the most abundant sulfide and commonly occurs in 1 to 3 mm blebs, averaging 3-4 volume percent. Chalcopyrite averages 0.5 volume percent, but high grade concentrations reach 8-10 volume percent locally. Sulfides in the Lamotte Sandstone in the Indian Creek subdistrict commonly occur within 40 ft of the Bonneterre-Lamotte contact, with the highest concentrations within 20 ft or less of the contact. Structure maps of the lead- and copper- bearing-zones mimic the basement topography, suggesting that the Precambrian basement was the major controlling factor on ore deposition in the Indian Creek subdistrict. Vertical tubes of sulfides, which cross-cut bedding near the Lamotte pinchout in the Goose Creek mine, suggest that the ore-bearing fluids moved through the sandstone aquifer until the pinchout forced them into the overlying Bonneterre. There the fluids were channeled through the grainstone-algal reef complex along the N30°E-trending Precambrian ridge. Limited fluid inclusion data for Bonneterre-hosted sphalerite indicate that the mineralizing fluid was a Na-Ca-Cl brine with temperatures between 105 and 120° C. / text
130

Shear-induced emulsions stabilized with surface-modified silica nanoparticles

Roberts, Matthew Ryan 12 July 2011 (has links)
The ability of surface-treated silica nanoparticles to stabilize oil/water emulsions presents us with many interesting avenues of study. The goal of this research is to assess the ability of a dispersion of specially surface-treated nanoparticles to stabilize an oil/water emulsion of prescribed internal structure created by flow within a fracture. We hypothesize that for a set of conditions (nanoparticle concentration, salinity, aqueous to organic phase ratio) a critical shear rate exists. That is, for flow rates that exceed this critical shear rate, an emulsion can be created. Flow experiments were conducted within fractured Boise sandstone and cement cylinders. The Boise sandstone core (D = 1 in and L = 12 in) was cut down its length and propped open to a specific aperture with beads. The fracture was saturated with dodecane then displaced with nanoparticle dispersion, and vice versa while pressure drop across the fracture was recorded. Class H cement cylinders (D = 1 in and L = 3 in) were allowed to set, then failed in compression to create a rough-walled fracture along their length. These fractured cement cylinders were then sealed and encased in epoxy to isolate the fractures. CT scans of the encased fractures were used to determine the aperture width, which is utilized when calculating the shear rate inside of the fracture maintained during an experiment. A dispersion of surface-modified silica nanoparticles and decane were coinjected into both the Boise sandstone and cement fractures and the pressure drop was measured across the fractures at a variety of shear rates. The effluent of each experiment was collected in sample tubes. Observation of the effluent and pressure drop data both support our hypothesis of emulsion generation being possible once a critical shear rate has been reached. Alteration of the injected phase ratio and increased residence time of the two phases inside of a fracture both affect the amount of emulsification occurring within the fractures. Increasing the residence time of both phases within a fracture allows for more opportunities for emulsification to occur, resulting in a greater amount of emulsion to be generated. Injection of high or low volumetric ratios of nanoparticle dispersion to organic phase results in little amounts of emulsion generation; however, between the nanoparticle dispersion to organic phase ratios of 0.25:1 and 2:1 significant amounts of emulsion are generated. / text

Page generated in 0.0375 seconds