Spelling suggestions: "subject:"[een] SANDSTONE"" "subject:"[enn] SANDSTONE""
131 |
SPONTANEOUS IMBIBITION CHARACTERISTICS OF FONTAINEBLEAU SANDSTONE BY SECONDARY AND TERTIARY RECOVERY.Saini, Sunny 02 November 2012 (has links)
Spontaneous imbibition of water into Fontainebleau Sandstone matrix because of capillary gradient is an important mechanism for oil recovery from Fontainebleau Sandstone reservoirs. Spontaneous imbibition characteristics of Fontainebleau Sandstone core were determined by measuring the Wettability Index of four Fontainebleau Sandstone core samples under laboratory conditions. This was done by utilizing a combination of a Benchtop Relative Permeameter Flooding System and Amott Cups. The specimen had a diameter of 38mm and a height of 47mm. Permeability and porosity of the cores varied from 12 to 14 mD and 10 to 14% respectively. The fluids and chemicals used were kerosene, synthetic brine and Sodium dodecyl sulphate. Amott’s method was used to measure the wettability index. This method consists of four steps: (1) brine flooding, (2) spontaneous imbibition of brine, (3) kerosene flooding, (4) spontaneous imbibition of kerosene.
One core was saturated with kerosene and then flooded with brine, followed by spontaneous imbibition of brine. Similarly, another core was saturated with brine and then flooded with kerosene, followed by spontaneous imbibition of kerosene. Similar procedures were used for other two cores except the addition of surfactant to the synthetic brine. All cores were then cleaned and re-saturated for spontaneous imbibition of kerosene and brine. All Experiments were performed under laboratory temperature conditions. Oil and water wettability values were obtained along with secondary and tertiary oil recoveries. These values were used to calculate the wettability index of Fontainebleau sandstone cores. Spontaneous imbibition characteristics of the cores obtained from the experimental data indicate that Fontainebleau Sandstone formation is a potential candidate for Secondary and Tertiary oil recovery by water injection and spontaneous imbibition.
|
132 |
A New Environmentally Friendly AL/ZR-Based Clay StabilizerEl-Monier, Ilham Abdallah 02 October 2013 (has links)
Clay stabilizers are means to prevent fines migration and clay swelling, which are caused by the contact of formation with low salinity or high pH brines at high temperature. Previous clay stabilizers including: Al and Zr compounds and cationic polymers have several drawbacks. Al and Zr compounds can be removed by acids. Cationic polymers can cause formation damage in some cases. Quaternary amine-based chemicals have been used for many years as clay stabilizer, however, environmental profile of some has limited their use. There is a need to develop new clay stabilizers that can work following acid treatment and are environmentally acceptable.
Laboratory studies were conducted on newly developed Al/Zr-based compound (Stabilizer A) to determine the optimum conditions for field application. Zeta potential was used to determine surface charge of different types of clays; and to optimize clay stabilizer concentration. Coreflood experiments were conducted on Berea and Bandera sandstone cores to assess the effectiveness of the new compound at high temperature, and determine the impact of acids on its performance. Also the effectiveness of this stabilizer was investigated at high pH medium and in low permeability cores. Inductively Coupled Plasma was used to measure the concentrations of e key cations in the core flood effluent. Three different commercial clay stabilizers (zirconium oxychloride, choline chloride and tetramethyl ammonium chloride) were also tested to validate the new chemical.
The new clay stabilizer was very effective in mitigating fines migration. Zeta potential indicated that the isoelectric point at which complete shields of surface charge of clay particles was achieved at a stabilizer concentration of 0.2 wt%. Coreflood tests showed that this new chemical was effective, and unlike previous Al-based and Zr-based stabilizers (hydroxy aluminum and zirconium oxychloride solutions), it did not dissolve in acids and worked very well up to 300oF. Stabilizer A proved to be better than the three commercial stabilizers. Stabilizer A worked effectively at the high pH and no reduction in permeability was noticed after NaOH injection, unlike the other stabilizers. In addition, Stabilizer A is an inorganic-based fluid, environmentally friendly, in contrast to Quaternary amine chemicals.
|
133 |
Geophysical Fault Mapping Using the Magnetic Method at Hickory Sandstone Aquifer, Llano Uplift, TexasPereira, Antonio Do Nascimento 03 October 2013 (has links)
A magnetic study over a 95 m x 150 m area of the Hickory sandstone aquifer in central Texas was carried out as part of multitechnique geophysical investigation that included ground penetrating radar (GPR), electromagnetic (EM), seismic and seimoelectric. In geophysical exploration, the magnetic method can be utilized as an alternative to more expensive methods, such as seismic or it can be used to complement other methods. In this thesis, the magnetic method is applied to estimate the location of a previously mapped fault by Texas A&M geology students, and it is used to estimate the magnetic susceptibility contrast of the targeted fault. The main challenge of this study is imaging shallow faults using the geophysical magnetic method in a fractured aquifer with widely-scattered distribution of iron bearing rocks as in the case of the Hickory sandstone aquifer.
A Geometric—G858 Cesium vapor magnetometer was used to collect magnetic data. The data consisted of 19 north-south and 1 east-west lines acquired in October and November of 2012. Elementary data processing such as diurnal correction, regional correction, reduction to pole (RTP) filter, Euler deconvolution, forward modeling and inversion were employed to characterize the faulted zone. This faulted zone separates granite basement rocks from the Hickory sandstone. As a result, this study emphasizes that Euler deconvolution applied to RTP-filtered data increases the interpretability of geological and structural contacts. The results of the magnetic method have been compared to results of GPR, EM and seismoelectric methods. Understanding the magnetic mineralogy of rocks and their properties can improve the geological interpretation of magnetic surveys.
|
134 |
Quantifying the Permeability Heterogeneity of Sandstone Reservoirs in Boonsville Field, Texas by Integrating Core, Well Log and 3D Seismic DataSong, Qian 03 October 2013 (has links)
Increasing hydrocarbon reserves by finding new resources in frontier areas and improving recovery in the mature fields, to meet the high energy demands, is very challenging for the oil industry. Reservoir characterization and heterogeneity studies play an important role in better understanding reservoir performance to meet this industry goal. This study was conducted on the Boonsville Bend Conglomerate reservoir system located in the Fort Worth Basin in central-north Texas. The primary reservoir is characterized as highly heterogeneous conglomeratic sandstone. To find more potential and optimize the field exploitation, it’s critical to better understand the reservoir connectivity and heterogeneity. The goal of this multidisciplinary study was to quantify the permeability heterogeneity of the target reservoir by integrating core, well log and 3D seismic data.
A set of permeability coefficients, variation coefficient, dart coefficient, and contrast coefficient, was defined in this study to quantitatively identify the reservoir heterogeneity levels, which can be used to characterize the intra-bed and inter-bed heterogeneity. Post-stack seismic inversion was conducted to produce the key attribute, acoustic impedance, for the calibration of log properties with seismic. The inverted acoustic impedance was then used to derive the porosity volume in Emerge (the module from Hampson Russell) by means of single and multiple attributes transforms and neural network. Establishment of the correlation between permeability and porosity is critical for the permeability conversion, which was achieved by using the porosity and permeability pairs measured from four cores. Permeability volume was then converted by applying this correlation. Finally, the three heterogeneity coefficients were applied to the permeability volume to quantitatively identify the target reservoir heterogeneity. It proves that the target interval is highly heterogeneous both vertically and laterally. The heterogeneity distribution was obtained, which can help optimize the field exploitation or infill drilling designs.
|
135 |
Petrographic characterization of sandstones in borehole E-BA1, Block 9, Bredasdorp Basin, Off-Shore South Africa.Van Bloemenstein, Chantell Berenice January 2006 (has links)
<p>The reservoir quality (RQ) of well E-BA1 was characterized using thin sections and core samples in a petrographic study. Well E-BA1 is situated in the Bredasdorp Basin, which forms part of the Outeniqua Basin situated in the Southern Afircan offshore region. Rifting as a result of the break up of Gondwanaland formed the Outeniqua Basin. The Bredasorp Basin is characterized by half-graben structures comprised of Upper Jurassic, Lower Cretaceous and Cenozoic rift to drift strata. The current research within the thesis has indicated that well E-BA1 is one of moderate to good quality having a gas-condensate component.</p>
|
136 |
Basin Analysis of the Porter Group, Castle Hill Basin, Canterbury: Implications for Oligocene Tectonics in New Zealand.Congdon, Linda Marie January 2003 (has links)
A basin analysis of the Oligocene Porter Group rocks in Castle Hill Basin, Canterbury, was completed. The Porter Group contains the Coleridge Formation which comprises a lower sandstone unit and an upper micritic limestone unit, and the Thomas Formation which consists of biosparite limestone and interbedded tuffs. Basin analysis provided evidence that the Coleridge Formation lower sandstone unit was deposited in an inner shelf setting based upon its moderate sorting, large grain size range, laterally continuous geometry and lack of bedforms due to intense bioturbation. The upper micritic limestone is a mid shelf deposit composed of micrite and minor clastic grains. Provenance analysis has classified the lower sandstone unit as a quartz arenite. Both metamorphic and plutonic source areas are likely for the sandstone, along with reworked grains from underlying Formations based on QFL, SEM-CL, heavy mineral and glauconite analysis. The Thomas Formation limestone is a typical New Zealand cool water biosparite deposited on the inner shelf as a result of storms and debris flows, with the upper cross-bedded limestone lithofacies being reworked by currents in shallow water. Petrographic data showing multiple stages of diagenesis at the upper contact of the Thomas Formation provides evidence for a major tectonic event. The interbedded tuffs are a result of basaltic marine volcanism on the inner to mid shelf. The tuffs are reworked and deposited by turbidity current, debris flow and storms. Analysis of a dike within the Thomas Formation volcanics showed a weakly alkaline geochemical signature that is indicative of volcanism related to extension. A regional synthesis compared the Porter Group rocks in Castle Hill Basin with Oligocene rocks in North Canterbury, West Coast and North Otago. Oligocene quartz-rich sandstones are found in Castle Hill Basin, Harper Valley, Avoca and Culverden while micritic limestone is found on the East Coast from Marlborough to Otago. Oligocene basaltic volcanics interbedded with limestone and karst unconformities are found in Castle Hill Basin, Culverden and Otago. Normal faulting may be responsible for thickness variations and several regional karst unconformities in the eastern South Island. Plate reconstructions based on sea floor magnetic anomalies also suggests the New Zealand region was tectonically active during the Oligocene. Mounting evidence, including Eocene-Oligocene faulting and volcanism in the South Island, suggests that New Zealand may not be best described as a passive margin during the Early-Mid Tertiary.
|
137 |
Paleoenvironmental Interpretations of the Lower Taylor Group, Olympus Range area, southern Victoria Land, AntarcticaGilmer, Greer Jessie January 2008 (has links)
The Devonian Taylor Group, in the Olympus Range area, southern Victoria Land (SVL), Antarctica, is separated from the basement by a regional nonconformity (Kukri Erosion Surface). A second localized unconformity within the Taylor Group called the Heimdall Erosion Surface separates the New Mountain Sandstone and older units from the younger Altar Mountain Formation. The depositional environment of the New Mountain Sandstone has long been under contention. The New Mountain Sandstone Formation is a predominantly quartzose cross-bedded sandstone. Its newly defined Mt Jason Member is a coarse arkosic small scale cross-bedded pebbly sandstone that grades up section into the rest of the quartzose New Mountain Sandstone with large scale cross beds. The New Mountain Sandstone has been divided into five lithofacies including the Basal Conglomerate Lithofacies, Pebbly Sandstone Lithofacies, Granule Cross-bedded Lithofacies, Pinstripe Cross-bedded Lithofacies and Cross-bedded Sandstone Lithofacies. Deposition was in a shoreface environment with minor coastal aeolian deposition. The environment changed from upper shoreface to lower shoreface up section, forming transgressive to highstand systems tracts. The Heimdall Erosion Surface truncates the Cross-bedded Sandstone Lithofacies and the Pinstripe Cross-bedded Lithofacies and was formed due to relative sea level fall leading to exposure and erosion of underlying sedimentary and basement rocks. It forms a type 1 sequence boundary. The New Mountain Sandstone was partially or totally lithified before erosion as shown by the jagged morphology of the eroded cross beds on the surface. It is not known when cementation of the NMS took place or how much of the formation has been eroded. The Heimdall Erosion Surface and Kukri Erosion Surface converge locally due to erosion on the Heimdall Erosion Surface and relief on the Kukri Erosion Surface. The Heimdall Erosion Surface became a shore platform and the site of deposition as relative sea level rose. The Altar Mountain Formation with its Odin Member is a cross-bedded, massive and bedded feldspathic and quartzose sandstone that fines up section and is deposited on the erosion surface. The Altar Mountain Formation is divided into four lithofacies including the Conglomerate Lithofacies, Trough Cross-bedded Lithofacies, Cross-bedded Bioturbated Lithofacies and Bedded Fine Lithofacies. Deposition was in a shoreface environment, changing up section to an inner shelf environment with minor estuarine/tidal influence near the top of the section forming transgressive to highstand to regressive system tracts. The sedimentary rocks are derived mainly from the Granite Harbour Intrusives and Koettlitz Group, which underlie the sandstones, but were exposed elsewhere in SVL. The sandstone clasts within the Conglomerate Lithofacies could be derived from underlying older Taylor Group rocks or exotic sources from outside the field area. Correlation with data from adjacent areas suggests deposition of the New Mountain Sandstone occurred in a shallow sea that existed from the Olympus Range, southwards into the Asgard Range and included Vashka Crag. The area around Sponsors Peak and to the north was exposed and supplying feldspathic and quartzose sediment and pebbles into the depositional basin. As relative sea level fell due to either tectonic uplift or eustatic processes a large area of southern Victoria Land was exposed including the Olympus and Asgard Ranges and Bull Pass-St Johns Range area. This lead to erosion of the New Mountain Formation and basement rocks. Deposition of the New Mountain Sandstone continued further south shown by the gradational contact between it and the overlying Altar Mountain Formation. Relative sea level rise led to deposition of the Altar Mountain Formation. Shallow seas once more dominated the southern Victoria Land with deltas in the east (in the Bull Pass-St Johns Range area) feeding feldspathic sediment into the depositional basin (Odin Member). Further sea level rise drowned the delta region and a shallow marine to inner shelf environment led to deposition of the rest of the Altar Mountain Formation.
|
138 |
The effect of diagenesis and facies distribution on reservoir quality in the Permian sandstones of the Toolachee gas field, southern Cooper Basin, South Australia /Alsop, David Barry. January 1990 (has links) (PDF)
Thesis (M.S.)--University of Adelaide, Dept. of Geology and Geophysics, 1991. / Includes bibliographical references.
|
139 |
A petrophysical study on the influence of effective stress and fluid saturation on acoustic velocities in sandstones /Khaksar, Abbas. January 1999 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, National Centre for Petroleum Geology and Geophysics, 1999. / Includes bibliographical references (leaves 147-157).
|
140 |
An NMR investigation of pore size and paramagnetic effects in synthetic sandstones /Ronan, Leah L. January 2006 (has links)
Thesis (Ph.D.)--University of Western Australia, 2007.
|
Page generated in 0.0371 seconds