• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 39
  • 33
  • 21
  • 15
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 400
  • 158
  • 62
  • 61
  • 37
  • 36
  • 33
  • 32
  • 31
  • 28
  • 24
  • 24
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Fine scale sandstone acidizing coreflood simulation

Li, Chunlou 28 August 2008 (has links)
Not available / text
112

Subsurface stratigraphy of the Eocene Cocoa Sand Member in Mississippi and Alabama

Zhang, Xiaodong 14 December 2013 (has links)
The Eocene Cocoa Sand Member of Yazoo Formation is fine grained, moderately to well sorted, poorly cemented, quartz arenite. Surface exposures are poor, but it has been mapped from west Choctaw County, Alabama to eastern Jasper County, Mississippi. In the subsurface, the Cocoa Sand Member is identified by obvious protrusion both in Spontaneous and Resistivity Logs. Northeast to southwest cross-sections (perpendicular to the paleo-shoreline) and northwest to southeast cross-sections (parallel to the paleo-shoreline) were developed, along with isopach maps, to determine the sequence stratigraphic setting and a depositional model of the Cocoa Sand Member. Previous work has interpreted the Cocoa Sand Member as a shelf margin sand deposited as part of a lowstand systems tract or as a transgressive sand. Grain size analysis indicates that the sand coarsens upward and there is evidence in core that the upper contact of the Cocoa sand with the Pachuta Marl is sharp, representing an upper erosion surface. The presence of rip-up clasts at the base of the Cocoa sand member supports the presence of a transgressive surface at the contact with the North Twistwood Creek. Based on the sand thickness distribution as identified in the Cocoa Sand isopach map and cross sections, two sand ridges have been recognized extending nearly parallel to the paleoshoreline across the Mississippi and Alabama. A three stage model is presented suggesting the formation of these ridges during transgression with the source of the sand being from the eroded and reworked underlying North Twistwood Creek Member. / Department of Geological Sciences
113

Geochemical Comparison of Ancient and Modern Eolian Dune Foresets Using Principal Components Analysis

Little, David A. 01 November 2016 (has links)
Geochemistry has been used to determine the provenance and diagenetic history of eolian sandstone deposits. However, the grain size, sorting, cementation, and detrital composition of eolian units can change along dune foreset laminae. The purpose of this study was to test for consistent trends of compositional change along dune foresets. Such trends could increase the quality of geochemical sampling of eolian sandstones and possibly aid in estimating the original height of ancient sand dunes. XRF data was gathered for both major and trace elements from the Pennsylvanian to Permian Weber Sandstone, Early Jurassic Navajo Sandstone, and modern Coral Pink Sand Dunes of southern Utah. Data was plotted using both 2-dimensional scatter plots and 3-dimensional principal components analysis (PCA) plots. The PCA plots proved to be the most informative and suggest that there are no consistent, statistically significant geochemical trends within or between the three units sampled. However, this study found that PCA was able to show significant geochemical differences between the three units sampled, even when they are all dominated by a single mineral (>90% quartz). The Weber Sandstone had the most varied composition, and dunes within the unit could be highly dissimilar to each other. The Navajo Sandstone had less overall geochemical variability than the Weber Sandstone, and individual dunes were similar to each other. The modern Coral Pink Sand Dunes had much less compositional variation than either of the other two units, and dunes in this unit were very similar to each other.
114

Geochemical investigation of diagenetic history of Pennsylvanian Morrowan sandstone, Lexington field, Clark County, Kansas

Robinson, Richard J January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
115

Characterising and predicting fracture patterns in a sandstone fold-and-thrust belt

Watkins, Hannah E. January 2015 (has links)
Fracture distribution in a fold and thrust belt is commonly thought to vary depending on structural position, strain, lithology and mechanical stratigraphy. The distribution, geometry, orientation, intensity, connectivity and fill of fractures in a reservoir are all important influences on fractured reservoir quality. The presence of fractures is particularly beneficial in reservoirs that contain little matrix porosity or permeability, for example tight sandstones. In these examples fractures provide essential secondary porosity and permeability that enhance reservoir production. To predict how reservoir quality may fluctuate spatially, it is important to understand how fracture attributes may vary, and what controls them. This research aims to investigate the influence of structural position on fracture attribute variations. Detailed fracture data collection is undertaken on folded sandstone outcrops. 2D forward modelling and 3D model restorations are used to predict strain distribution in the fold-and-thrust belt. Relationships between fracture attributes and predicted strain are determined. Discrete Fracture Network (DFN) modelling is then undertaken to predict fracture attribute variations. DFN modelling results are compared with field fracture data to determine how well fractured reservoir quality can be predicted. Field data suggests strain is a major controlling factor on fracture formation. Fractures become more organised and predictable as strain increases. For example in high strain forelimb regions, fracture intensity and connectivity are high, and fracture orientations are consistent. In lower strain regions, fracture attributes are much more variable and unpredictable. Fracture variations often do not correspond to strain fluctuations, and correlations can be seen between fracture intensity and lithology. Reservoir quality is likely to be much more variable in low strain regions than high strain regions. DFN modelling is also challenging because fracture attribute variations in low strain regions do not correspond to strain, and therefore cannot be predicted.
116

Basin Analysis of the Porter Group, Castle Hill Basin, Canterbury: Implications for Oligocene Tectonics in New Zealand.

Congdon, Linda Marie January 2003 (has links)
A basin analysis of the Oligocene Porter Group rocks in Castle Hill Basin, Canterbury, was completed. The Porter Group contains the Coleridge Formation which comprises a lower sandstone unit and an upper micritic limestone unit, and the Thomas Formation which consists of biosparite limestone and interbedded tuffs. Basin analysis provided evidence that the Coleridge Formation lower sandstone unit was deposited in an inner shelf setting based upon its moderate sorting, large grain size range, laterally continuous geometry and lack of bedforms due to intense bioturbation. The upper micritic limestone is a mid shelf deposit composed of micrite and minor clastic grains. Provenance analysis has classified the lower sandstone unit as a quartz arenite. Both metamorphic and plutonic source areas are likely for the sandstone, along with reworked grains from underlying Formations based on QFL, SEM-CL, heavy mineral and glauconite analysis. The Thomas Formation limestone is a typical New Zealand cool water biosparite deposited on the inner shelf as a result of storms and debris flows, with the upper cross-bedded limestone lithofacies being reworked by currents in shallow water. Petrographic data showing multiple stages of diagenesis at the upper contact of the Thomas Formation provides evidence for a major tectonic event. The interbedded tuffs are a result of basaltic marine volcanism on the inner to mid shelf. The tuffs are reworked and deposited by turbidity current, debris flow and storms. Analysis of a dike within the Thomas Formation volcanics showed a weakly alkaline geochemical signature that is indicative of volcanism related to extension. A regional synthesis compared the Porter Group rocks in Castle Hill Basin with Oligocene rocks in North Canterbury, West Coast and North Otago. Oligocene quartz-rich sandstones are found in Castle Hill Basin, Harper Valley, Avoca and Culverden while micritic limestone is found on the East Coast from Marlborough to Otago. Oligocene basaltic volcanics interbedded with limestone and karst unconformities are found in Castle Hill Basin, Culverden and Otago. Normal faulting may be responsible for thickness variations and several regional karst unconformities in the eastern South Island. Plate reconstructions based on sea floor magnetic anomalies also suggests the New Zealand region was tectonically active during the Oligocene. Mounting evidence, including Eocene-Oligocene faulting and volcanism in the South Island, suggests that New Zealand may not be best described as a passive margin during the Early-Mid Tertiary.
117

Paleoenvironmental Interpretations of the Lower Taylor Group, Olympus Range area, southern Victoria Land, Antarctica

Gilmer, Greer Jessie January 2008 (has links)
The Devonian Taylor Group, in the Olympus Range area, southern Victoria Land (SVL), Antarctica, is separated from the basement by a regional nonconformity (Kukri Erosion Surface). A second localized unconformity within the Taylor Group called the Heimdall Erosion Surface separates the New Mountain Sandstone and older units from the younger Altar Mountain Formation. The depositional environment of the New Mountain Sandstone has long been under contention. The New Mountain Sandstone Formation is a predominantly quartzose cross-bedded sandstone. Its newly defined Mt Jason Member is a coarse arkosic small scale cross-bedded pebbly sandstone that grades up section into the rest of the quartzose New Mountain Sandstone with large scale cross beds. The New Mountain Sandstone has been divided into five lithofacies including the Basal Conglomerate Lithofacies, Pebbly Sandstone Lithofacies, Granule Cross-bedded Lithofacies, Pinstripe Cross-bedded Lithofacies and Cross-bedded Sandstone Lithofacies. Deposition was in a shoreface environment with minor coastal aeolian deposition. The environment changed from upper shoreface to lower shoreface up section, forming transgressive to highstand systems tracts. The Heimdall Erosion Surface truncates the Cross-bedded Sandstone Lithofacies and the Pinstripe Cross-bedded Lithofacies and was formed due to relative sea level fall leading to exposure and erosion of underlying sedimentary and basement rocks. It forms a type 1 sequence boundary. The New Mountain Sandstone was partially or totally lithified before erosion as shown by the jagged morphology of the eroded cross beds on the surface. It is not known when cementation of the NMS took place or how much of the formation has been eroded. The Heimdall Erosion Surface and Kukri Erosion Surface converge locally due to erosion on the Heimdall Erosion Surface and relief on the Kukri Erosion Surface. The Heimdall Erosion Surface became a shore platform and the site of deposition as relative sea level rose. The Altar Mountain Formation with its Odin Member is a cross-bedded, massive and bedded feldspathic and quartzose sandstone that fines up section and is deposited on the erosion surface. The Altar Mountain Formation is divided into four lithofacies including the Conglomerate Lithofacies, Trough Cross-bedded Lithofacies, Cross-bedded Bioturbated Lithofacies and Bedded Fine Lithofacies. Deposition was in a shoreface environment, changing up section to an inner shelf environment with minor estuarine/tidal influence near the top of the section forming transgressive to highstand to regressive system tracts. The sedimentary rocks are derived mainly from the Granite Harbour Intrusives and Koettlitz Group, which underlie the sandstones, but were exposed elsewhere in SVL. The sandstone clasts within the Conglomerate Lithofacies could be derived from underlying older Taylor Group rocks or exotic sources from outside the field area. Correlation with data from adjacent areas suggests deposition of the New Mountain Sandstone occurred in a shallow sea that existed from the Olympus Range, southwards into the Asgard Range and included Vashka Crag. The area around Sponsors Peak and to the north was exposed and supplying feldspathic and quartzose sediment and pebbles into the depositional basin. As relative sea level fell due to either tectonic uplift or eustatic processes a large area of southern Victoria Land was exposed including the Olympus and Asgard Ranges and Bull Pass-St Johns Range area. This lead to erosion of the New Mountain Formation and basement rocks. Deposition of the New Mountain Sandstone continued further south shown by the gradational contact between it and the overlying Altar Mountain Formation. Relative sea level rise led to deposition of the Altar Mountain Formation. Shallow seas once more dominated the southern Victoria Land with deltas in the east (in the Bull Pass-St Johns Range area) feeding feldspathic sediment into the depositional basin (Odin Member). Further sea level rise drowned the delta region and a shallow marine to inner shelf environment led to deposition of the rest of the Altar Mountain Formation.
118

Petrographic characterization of sandstones in borehole E-BA1, Block 9, Bredasdorp Basin, Off-Shore South Africa.

Van Bloemenstein, Chantell Berenice January 2006 (has links)
<p>The reservoir quality (RQ) of well E-BA1 was characterized using thin sections and core samples in a petrographic study. Well E-BA1 is situated in the Bredasdorp Basin, which forms part of the Outeniqua Basin situated in the Southern Afircan offshore region. Rifting as a result of the break up of Gondwanaland formed the Outeniqua Basin. The Bredasorp Basin is characterized by half-graben structures comprised of Upper Jurassic, Lower Cretaceous and Cenozoic rift to drift strata. The current research within the thesis has indicated that well E-BA1 is one of moderate to good quality having a gas-condensate component.</p>
119

Komplexní studium porušování pískovcových skalních objektů (případová studie: Pravčická brána, Národní park České Švýcarsko) / Comprehensive study of the sandstone rock forms deterioration (Case study: Pravčická brána Arch, Bohemian Switzerland National Park)

Vařilová, Zuzana January 2011 (has links)
This PhD thesis contains the results of comprehensive research into the Pravčická brána Arch and surrounding sandstone massifs with focus on gaining more knowledge about natural dynamics and evolution of this rock formation, its current level of stability and the weathering processes it displays. Non-destructive methods were used for this comprehensive study; these ranged from detailed field documentation to monitoring temperature regime of the rock and included application of a geophysical survey and control monitoring of the course of arch body deformation. Laboratory testing was carried out for strength parameters and salt efflorescences together with weathered sandstones were analysed for chemical compounds. Main operating factors were monitored simultaneously, which particularly involved changes in external temperature, degree of sunlight and chemical composition of rainfall. Conventional as well as entirely new assessment procedures were used in synthesis and interpretation of the data collected, including knowledge of nonlinear dynamics of complex systems. The survey was designed to fully respect the protective conditions of the site, to make follow-up activities possible in future and to monitor any possible negative changes in the rock massif. The main results incorporate description of...
120

Stabilita skalních svahů a její porušování / Rock slope stability and failures

Pacholíková, Andrea January 2013 (has links)
This Master's thesis deals with the issue of rock face stability on the natural heritage site of Stře- šovické skály. The author has documented the rock face of the Cretaceous sandstones in aim to identify e unstable stones, blocks or whole parts of the rock face and potentially destabilizing trees or shrubs. The area of interest was divided into 8 sections that have been separately described and measured. Four rock samples have been macroscopically described, surface hardness has been also measured in the field in order to verify technical parameters of the Cenomanian sandstones, forming the rock terrace. The strike and slip of fractu- res was measured with a geological compass. The results of these measurements were then drawn in stereo- graphic projection using the Openstereo 0.1.2 software. The field exploration has shown that the hazard of rock failure is considerably high in several do- cumented profiles. Finally, the author recommended measures that should be taken to reduce the risk with regard to the fact that the area under investigation is a natural heritage site, so that extensive remediation is not possible.

Page generated in 0.0385 seconds