• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 74
  • 37
  • 14
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 594
  • 207
  • 107
  • 69
  • 66
  • 55
  • 55
  • 51
  • 50
  • 46
  • 41
  • 37
  • 37
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Ch3- Palynology

Wai Kehadeezbah Allen (14671736) 17 May 2024 (has links)
<p>This dataset contains results of a palynological study completed by Dr. Robert L. Raven from the IRF Group Inc in December 29, 2018</p> <p><br></p> <p>Palynological analysis was performed on siltstone samples that were collected from 4 outcrops of cenozoic strata from the study area of Chapter 3 in the eastern Alaska Range. This file includes the results of that study and detail about he present pollen assemblages as well as images</p> <p><br></p> <p>Jeffrey Benowitz contracted this work</p>
292

Analysis and Interpretation of Sediment Cores from Lake Seminole, Georgia

Regnier, Anna E. January 2024 (has links)
Thesis advisor: Noah Snyder / Rivers impounded by dams experience morphological changes that provide an opportunity to calculate reservoir sedimentation rates and relate them to watershed land-use history. In April 2023, 10 sediment cores were collected from 5 locations in Lake Seminole, Georgia. Analysis of loss on ignition (LOI), bulk density, elemental concentrations, and short-lived radionuclide geochronology aided in completing the following research objectives: correlating short and long sediment cores, determining whether the pre-dam sediment surface was reached at each location, measuring the sedimentation rates in the Chattahoochee and Flint arms of the reservoir, and evaluating the characteristics of each core in the context of its location and the history of Lake Seminole. This research explores how differences in river management, land use, and upstream geology in the watersheds have contributed to sedimentation differences in the Chattahoochee and Flint Rivers. / Thesis (BS) — Boston College, 2024. / Submitted to: Boston College. Morrissey School of Arts and Sciences. / Discipline: Earth and Environmental Sciences. / Discipline: Departmental Honors.
293

Carbonate microbialite formation in a prairie saline lake in Saskatchewan, Canada: paleohydrological and paleoenvironmental implications

Last, Fawn 12 1900 (has links)
Manito Lake is a large, perennial, Na-SO4 dominated hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has lead to reduction in volume and surface area. Today, the lake is 15% of its mid -20th century volume and 46% of its former area. This decrease in water level has exposed large areas of nearshore microbialites. These organosedimentary structures have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive and clotted. These features range from small, mm-scale, finely laminated encrustations to large, reef-like structures up to 5 m high and over 500 m long. Although there is relatively little consistent lateral variability in terms of morphology, the structures do vary significantly with elevation in the basin. Petrographic evidence confirms a strong biological involvement in the formation of these structures. Nonetheless, inorganic and trapping mechanisms may also play a role. Dolomite, aragonite, and calcite are the most commonly found minerals in these structures, however, monohydrocalcite, magnesian calcite, hydromagnesite, dypingite, and nesquehonite are also present. The calcite is a pseudomorph after ikaite, which forms an open porous dendritic and shrub-like fabric, comprising the interiors of massive shoreline microbialite mounds and pinnacles. These ikaite pseudomorphs are encased in millimeter to centimeter-scale laminated dolomite-aragonite rinds. Radiocarbon dating and stable isotope analysis have indicated microbialite formation began about 2200 yBP in a shallow, productive, saline and cold lake. Over the next 900 years, the microbialites record a transgressing lake in a cool climate, which corresponds to a period not previously documented in this region but is referred to as the Dark Ages Cold Period, which has been documented in other parts of the Northern Hemisphere. This is followed by 500 years of warmer conditions coinciding with the Medieval Climate Anomaly. Starting about 600 years ago the lake experienced a dramatic decrease in level resulting in formation of extensive carbonate pavements, cemented siliciclastics, rinds, and coatings.
294

Carbonate microbialite formation in a prairie saline lake in Saskatchewan, Canada: paleohydrological and paleoenvironmental implications

Last, Fawn 12 1900 (has links)
Manito Lake is a large, perennial, Na-SO4 dominated hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has lead to reduction in volume and surface area. Today, the lake is 15% of its mid -20th century volume and 46% of its former area. This decrease in water level has exposed large areas of nearshore microbialites. These organosedimentary structures have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive and clotted. These features range from small, mm-scale, finely laminated encrustations to large, reef-like structures up to 5 m high and over 500 m long. Although there is relatively little consistent lateral variability in terms of morphology, the structures do vary significantly with elevation in the basin. Petrographic evidence confirms a strong biological involvement in the formation of these structures. Nonetheless, inorganic and trapping mechanisms may also play a role. Dolomite, aragonite, and calcite are the most commonly found minerals in these structures, however, monohydrocalcite, magnesian calcite, hydromagnesite, dypingite, and nesquehonite are also present. The calcite is a pseudomorph after ikaite, which forms an open porous dendritic and shrub-like fabric, comprising the interiors of massive shoreline microbialite mounds and pinnacles. These ikaite pseudomorphs are encased in millimeter to centimeter-scale laminated dolomite-aragonite rinds. Radiocarbon dating and stable isotope analysis have indicated microbialite formation began about 2200 yBP in a shallow, productive, saline and cold lake. Over the next 900 years, the microbialites record a transgressing lake in a cool climate, which corresponds to a period not previously documented in this region but is referred to as the Dark Ages Cold Period, which has been documented in other parts of the Northern Hemisphere. This is followed by 500 years of warmer conditions coinciding with the Medieval Climate Anomaly. Starting about 600 years ago the lake experienced a dramatic decrease in level resulting in formation of extensive carbonate pavements, cemented siliciclastics, rinds, and coatings.
295

Evolution and stratigraphic architecture of tidal point bars with and without fluvial input: influence of variable flow regimes on sediment and facies distribution, and lateral accretion

Souza, Pricilla 20 December 2019 (has links)
Tide-influenced point bars represent a significant proportion of shallow-marine deposits, commonly developed along meandering channels in most backbarrier and estuarine systems. However, sedimentological studies to characterize this type of deposit are still emerging. They often present very heterogeneous internal architectures which development is controlled by the complex flow patterns operating in tidal environments. The study of the sedimentological and morphological characteristics of these features provides better understanding of the hydrodynamic processes that shape coastal systems and control their evolution as well as it contributes to better reservoir potential prediction and production strategy optimization, as tidal point bars may represent hydrocarbon reservoirs in subsurface and their heterogeneous characteristics directly impact reservoir quality. In this study, we investigated six modern tidal point bars located along distinct estuarine tidal channels in Georgia. Using core data, 2D shallow seismic data and current measurements and flow velocity profiles, we discussed the main hydrodynamic controls on sediment transport and distribution, and determined how they affect the morphology, the internal architecture and the sediment distribution within these bars. We confirmed that the influence of fluvial input in tidal channels plays an important role on the development of the morphology and the heterogeneous architecture of point bars as it adds more complexity to the system hydrodynamics, promoting more asymmetric variations in water level fluctuations and huge variations of current velocities. We proved that point bars developed in distinct tide-influenced channels and estuaries, although present very different sedimentary facies distribution, may have sedimentary facies in common, which organization is analogous to surface processes operating at each environment. We demonstrated that differences in tidal asymmetries between the ebb and flood channels produce sedimentological differences between the different parts of the bar. This study showed that tidal point bars present distinct heterogeneous sediment distributions, morphologies and internal architectures that do not conform to the existing theoretical models of fluvial point bars and highlighted that, despite the differences in local hydrodynamic conditions, similarities identified between the different bars permitted us to distinguish the sedimentological responses to regional allogenic events, which can be mistakenly interpreted as sedimentological responses to local autogenic events.
296

Stratigraphic and Structural Framework for Denali National Park and Preserve, central Alaska Range: Implications of Upper Paleozoic-Cretaceous Stratigraphy for Mesozoic Tectonics and Paleogeography

Brandon M Keough (9666791) 16 December 2020 (has links)
<div>Paleozoic-Mesozoic stratigraphy exposed in the central Alaska Range includes a diverse assemblage of tectonostratigraphic basement terranes overprinted by late Mesozoic basin</div><div>formation and Cenozoic strike-slip displacement. In this thesis, I present a stratigraphic and structural framework for upper Paleozoic-Cretaceous strata exposed in Denali National Park and Preserve. The stratigraphic architecture of the study area is characterized by two distinct Upper Paleozoic-Mesozoic stratigraphic packages that are unconformably overlain by the Upper Cretaceous Cantwell Formation. Sedimentological, provenance, and geologic mapping data suggest that one basement assemblage, the Northern package, consists of Upper Triassic-Lower Cretaceous submarine strata deposited along the northwestern Laurentian margin. The other assemblage, termed the Southern package, is exotic to the ancestral continental margin and is associated with Permian-Upper Triassic submarine strata of the Farewell terrane. Provenance data from this package place new constraints on the Late Paleozoic paleogeographic position of the Farewell terrane prior to its accretion to the continental margin, likely by the Late Jurassic. The results of geologic mapping along the Toklat River corridor show that the Northern and Southern packages are deformed and structurally juxtaposed within a triangle zone bounded by the Hines Creek and Denali fault systems. This is the best exposure of stratigraphy associated with the Farewell terrane juxtaposed with strata representative of the ancestral continental margin known to date. New 1:24,000-scale geologic mapping coupled with a stratigraphic and provenance analysis of the Cantwell Formation provides new insights into sedimentation and deformation during the post-collisional phase of development of the Alaska Range suture zone (ARSZ). Results of this study define three stages of basin development. These stages are represented by alluvialfluvial, tidally influenced fluvial, and marginal marine deposits, respectively. Results of geologic mapping record progressive Late Cretaceous-Eocene deformation of the Cantwell Formation in a triangle zone and the transition from compressional to strike-slip tectonics in the Eocene. This deformation coincides with regional exhumation of the ARSZ and reconfiguration of the paleosouthern Alaskan margin with the establishment of the modern convergent margin configuration.</div>
297

Lithofacies, Sequence Stratigraphy, and Sedimentology of Desert Creek Platform, Slope, and Basin Carbonates, Southern Margin of the Aneth Complex, Middle Pennsylvanian, Paradox Basin, Utah

Perfili, Christopher M. 30 November 2020 (has links)
The Aneth Field in the Paradox Basin (SE Utah) has produced nearly 500 MMbbls of oil from phylloid-algal and oolitic carbonate reservoirs of the lower and upper Desert Creek (Paradox Formation, Middle Pennsylvanian) sequences, respectively. The oil resides in a 150 to 200 foot-thick isolated carbonate platform located in a distal ramp setting on the southwest margin of the Paradox Basin. The horseshoe-shaped platform is roughly 12 miles in diameter with an aerial extent of approximately 144 square miles. Evaluation of the platform-to-basin transition on the leeward (southern) margin of the Aneth Platform, the focus of this study, was made possible through Resolute Energy's 2017 donation of well data and core to the Utah Geological Survey Core Research Center. The lower Desert Creek sequence ranges from 50 to 100 feet in thickness and produces from a succession of phylloid-algal, boundstone-capped parasequences in the Aneth Platform. The upper Desert Creek sequence is generally thinner across the platform and is characterized by a succession of oolite-capped parasequences, except on the southern margin of the platform where it ranges from 80 to 115 feet in thickness. The upper Desert Creek thick resulted from southward shedding of platform-derived carbonate sediment and lesser amounts of quartz silt and very fine sand off the low-angle southern platform margin slope. A nine-mile-long, north-south-oriented stratigraphic panel constructed from log and core data permits characterization of thickness and facies trends through the upper Desert Creek from platform (north) to slope to distal basin (south) in the Ratherford unit. In the southern margin, five novel facies for the Aneth Field were analyzed, described, and interpreted using a sequence stratigraphic framework, all of which represent deposition on a gravity-influenced platform-edge slope. It is interpreted that the slope facies association was deposited during transgression and highstand and was generally a result of oversteepened slopes as a function of the carbonate factory on the platform being highly productive. Slope and basin facies range from proximal rudstone and floatstone to thin, graded distal turbidites, the latter of which extend at least five miles into the basin. Compaction of the muddy and fine-grained allochthonous sediment followed by pervasive calcite and anhydrite cementation has destroyed any primary porosity in the platform-derived slope-to-basin sediments.
298

Subsurface Facies Analysis of the Clinton Sandstone, Located in Perry, Fairfield, and Vinton Counties

Stouten, Craig A. 19 November 2014 (has links)
No description available.
299

Edimentology And Stratigraphy Of Turbeyani Marl Sequences And Inpiri Limestones (late Barremian - Albian): Implications For Possible Source And Reservoir Rocks (nw Turkey)

Nabiyev, Anar 01 April 2007 (has links) (PDF)
SEDIMENTOLOGY AND STRATIGRAPHY OF T&Uuml / RBEYANI MARL SEQUENCES AND iNPiRi LIMESTONES (LATE BARREMIAN - ALBIAN): IMPLICATIONS FOR POSSIBLE SOURCE AND RESERVOIR ROCKS (NW TURKEY) Anar Nabiyev M.Sc., Department of Geological Engineering Supervisor: Assist. Prof. Dr. i. &Ouml / mer Yilmaz April 2007, 105 pages Sedimentology, cyclostratigraphy and sequence stratigraphy of the T&uuml / rbeyani Marls (Albian) and the inpiri Limestone (Upper Barremian-Albian) members of Ulus Formation (incigez, Bartin, Amasra) were interpreted in this study. In the T&uuml / rbeyani Marls total of five different facies were defined. Marl and limestone facies are the most abundant in the succession. The depositional environment of the succession was defined as an outer shelf area. Within the pelagic marls 39 smaller order and 9 higher order cycles were recognized. These cycles correspond to the parasequences and parasequence sets of sequence stratigraphy, respectively. In the measured section only one type-3 sequence boundary was identified. In the inpiri Limestones great variety of limestone facies are represented. Bioclastic, peloidal, intraclastic wackestone-packstone-grainstone facies are the most abundant. Moreover, occurrence of lime mudstone, fenestral limestone, ooid packstone-grainstone, and sandstone facies are present as well. In the measured section of the inpiri Limestones 25 fifth order and 6 fourth order cycles were defined. These cycles correspond to the parasequence sets and systems tracts of the sequence stratigraphy, respectively. Total of three transgressive and three highstand systems tract were defined. Only one type 2 sequence boundary was identified in the measured section, the rest of them are interrupted by covers. This study revealed that the T&uuml / rbeyani Marls and the inpiri Limestones are not economically valuable as petroleum source and reservoir rocks, respectively. The total organic carbon (TOC) values of marl facies of the T&uuml / rbeyani marls are very low, and the pore spaces observed in the inpiri Limestone are cement filled making it unsuitable reservoir rock. Keywords: sedimentology, cyclostratigraphy, sequence stratigraphy, T&uuml / rbeyani Marls, inpiri Limestones, Albian, Upper Barremian, Amasra, Bartin.
300

Sedimentology of beach ridge and nearshore deposits, pluvial Lake Cochise, southeastern Arizona

Robinson, Richard Clarence, 1940- January 1965 (has links)
No description available.

Page generated in 0.4973 seconds