• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 28
  • 20
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 164
  • 164
  • 32
  • 25
  • 23
  • 19
  • 19
  • 18
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Applications and life cycle assessment of shape memory polyethylene terephthalate in concrete for crack closure

Maddalena, R., Sweeney, John, Winkles, J., Tuinea-Bobe, Cristina-Luminita, Balzano, B., Thompson, Glen P., Arena, N., Jefferson, T. 04 March 2022 (has links)
Yes / Shape memory polymer (SMP) products have been developed for application as crack closure de-vices in concrete. They have been made from PET in the form of both fibres and hollow tubes. Here, manufacturing methods using die-drawing and mandrel-drawing to induce shape memory are reported. The fibre-based devices are incorporated into concrete and, upon triggering, exert shrinkage restraint forces that close cracks in the concrete. The evolution of shrinkage restraint force in the fibres as manufactured was measured as a function of temperature, showing stresses in excess of 35 MPa. Tendons consisting of fibre bundles are incorporated into concreate beams subjected to controlled cracking. When activated, the tendons reduce the crack widths by 80%. The same fibres are used to produce another class of device known as knotted fibres, which have knotted ends that act as anchor points when they incorporated directly into concrete. Upon acti-vation within the cracked concrete, these devices are shown to completely close cracks. The tubes are used to enclose and restrain prestressed Kevlar fibres. When the tubes are triggered, they shrink and release the prestress force in the Kevlar, which is transferred to the surrounding con-crete in the form of a compressive force, thereby closing cracks. The Kevlar fibres also provide substantial reinforcement after activation. The devices are shown to be able to partially and fully close cracks that have been opened to 0.3 mm and achieve post-activation flexural strengths com-parable to those of conventional reinforced and prestressed structural elements. Finally, a pre-liminary life cycle assessment study was used to assess the carbon footprint a nominal unit of concrete made with SMPs fibres compared to conventional concrete. / This research was funded by the UKRI-EPSRC Resilient Materials 4 Life (RM4L), grant number EP/P02081X/1 and the support of ARUP via the UKIMEA research funding.
72

Synthesis and Structure-Property Relationships of Polysaccharide-Based Block Copolymers and Hydrogels

Chen, Junyi 04 February 2020 (has links)
Polysaccharides are known as among the most abundant natural polymers on the Earth. As this class of material is usually renewable, biodegradable, biocompatible in many contexts and environmentally friendly, it is of great interest to use these benign polymers to design and prepare materials, especially for applications with green and biomedical purposes. In this dissertation we will discuss novel pathways to two different types of polysaccharide-based materials: block copolymers and hydrogels. Block copolymers are composed of two or even more covalent bonded polymer blocks that have quite distinct properties. Synthesis of polysaccharide-based block copolymers is an attractive and challenging research topic, opening up promising application potential and requiring advances in polysaccharide regio- and chemoselectivity. Herein, we report two independent approaches to prepare these interesting and potential useful materials. In one approach, trimethyl cellulose was modified regiospecifically at the reducing end anomeric carbon to create an ω-unsaturated alkyl acetal by solvolysis with an ω-unsaturated alcohol. Then, olefin cross-metathesis, a known versatile and mild tool for polysaccharide chemical modification, was used to couple the trimethyl cellulose block with various polymer blocks containing acrylates. To demonstrate the method, trimethyl cellulose-b-poly(tetrahydrofuran), cellulose-b-poly(ethylene glycol), and cellulose-b-poly(lactic acid) were synthesized by this coupling strategy. In another approach, we introduced a simple and novel method to prepare dextran-based block copolymers. In this strategy, N-bromosuccinimide (NBS)/triphenyl phosphine (PPh3) was chosen to regioselectively brominate the only primary alcohol of linear unbranched dextran. The resulting dextran, bearing a terminal C-6 bromide, was coupled with several amine terminated polymers via SN2 substitution to obtain block copolymers, including dextran-b-polystyrene, dextran-b-poly(N-isopropylacrylamide) and dextran-b-poly(ethylene glycol). Dextran-b-poly(N-isopropylacrylamide) exhibits thermally-induced micellization as revealed by dynamic light scattering, forming micelles with 155 nm diameter at 40 °C. Dextran-b-polystyrene film was analyzed by small angle X-ray scattering, suggesting the existence of microphase separation. This dissertation also introduces a novel, simple and effective strategy to prepare polysaccharide-based hydrogels. Hydrogels are typically crosslinked hydrophilic polymers that have high water affinity and no longer dissolve in water. Polysaccharide-based hydrogels are of great interest to for biomedical applications due to their benefits including biocompatibility, polyfunctionality, and biodegradability. Recently the Edgar group has discovered that chemoselective oxidation of oligo(hydroxypropyl)-substituted polysaccharides impairs ketone groups at the termini of the oligo(hydroxypropyl) side chains. These ketones can condense with amines to form imines, leading hydrogel formation., Based on this concept, we prepared oxidized hydroxypropyl polysaccharide/chitosan hydrogels. This class of all-polysaccharide hydrogels exhibits a series of interesting properties such as tunable moduli (300 Pa to 13 kPa), self-healing, injectability, and high swelling ratios. To further explore imine-crosslinked hydrogels, we designed thermally responsive hydrogels by using a Jeffamine, a polyethylene oxide-b-polypropylene oxide-b-polyethylene oxide triblock copolymer with two terminal amines. As the Jeffamine has a lower critical solution temperature, oxidized hydroxypropyl cellulose/Jeffamine hydrogels display moduli that are tunable by controlling the temperature. / Doctor of Philosophy / Polysaccharide are natural polymers that are among the most abundant polymers on Earth. It is greatly in society's interest to extend the scope of their applications, due to the benign nature of polysaccharides. This dissertation mainly focuses on two polysaccharides: cellulose and dextran. Cellulose is a long linear polymer of linked glucose molecules. As cellulose is sustainable, biodegradable, non-toxic, affordable and accessable for chemical modification, it is a suitable polymer for biomedical and environmentally friendly application. Dextran is also a polymer chain made up only of glucose but connected with each other differently from cellulose by, bacterial fermentation, and it may be lightly branched. It is biocompatible in many situations and is biodegradable both in vivo and in the environment, thus it has been investigated for drug delivery and many other medical applications. Using these two polysaccharides, we designed and prepared two quite different classes of materials: block copolymers and hydrogels. Block copolymers consist of two or more different types of polymer blocks connected by strong covalent bonds. As block copolymerization enables construction of a single polymer comprising segments with distinct properties, it is appealing to synthesize a block copolymer which preserves the properties of natural polymers coupled to very different polymers, such as polyolefins (e.g. the polyethylene that is used for milk bottles). In order to prepare polysaccharide-based block copolymers, we developed two different synthetic routes to end-functionalize methyl cellulose and dextran , and these resulting products were used to prepare two independent series of polysaccharide-based block copolymers via combination (in other words, sticking the polysaccharide and, e.g., the polyethylene together end to end). This study confirms the feasibility of this method to make methyl cellulose-based and dextran-based block copolymers. We expect these classes of materials will have significant potential in applications including drug delivery, as compatibilizers for polymer blends of materials that otherwise cannot be mixed (polyolefin/polysaccharide), membrane and adhesive. Hydrogels are crosslinked polymer networks with high water affinity, and they have been heavily investigated in the field of tissue engineering, drug delivery, agriculture and 3D printing. Polysaccharide-based hydrogels are attractive materials for these applications because they are biocompatible, biodegradable and have polyfunctionality. However, any use of toxic small molecules to crosslink the hydrogels diminishes their usefulness in biomedical applications. In this work, we demonstrate a simple, green and efficient method for preparation of all-polysaccharide-based hydrogels. The starting materials, oxidized hydroxypropylpolysaccharide, were simply prepared by using household bleach (NaOCl) as the oxidation reagent. We discovered that oxidized hydroxypropyl polysaccharides readily form hydrogels with hydrophilic amine-containing polymers like chitosan (a natural polysaccharide that comes from shells of crustaceans like crabs or shrimp) and Jeffamines, affording interesting properties including tunable stiffness, self-healing, injectability, and responsiveness to acidity and temperature. We expect that this new class of hydrogel will be very promising for biomedical-related applications.
73

Self-healing concrete: efficiency evaluation and enhancement with crystalline admixtures

Roig Flores, Marta 03 April 2018 (has links)
Los materiales autosanables son materiales con la capacidad de reparar sus daños de forma autónoma o con ayuda mínima de estímulos externos. En el campo de la construcción, el desarrollo de elementos autosanables aumentará la durabilidad de las estructuras y reducirá las acciones de mantenimiento y reparación. Los elementos de hormigón armado presentan frecuentemente pequeñas fisuras (< 0.3 mm), no relevantes mecánicamente, pero que pueden suponer un punto de entrada para agentes agresivos. El hormigón tiene una cierta capacidad de autosanación, capaz de cerrar pequeñas fisuras, producida principalmente por la hidratación continuada y la carbonatación. Estudios recientes han intentado mejorar dicha capacidad y diseñar productos específicos para conseguirla. Estos productos incluyen, entre otros, aditivos cristalinos, agentes micro o macroencapsulados, e incluso el uso de bacterias. Los aditivos cristalinos (CA) son un tipo de aditivo para hormigón que se considera que aporta propiedades de autosanación. No obstante, la falta de conocimiento sobre su comportamiento limita su uso. Además, los métodos para evaluar la autosanación en hormigones no están estandarizados todavía. Esto complica la realización de un análisis crítico de los diferentes productos y métodos de evaluación propuestos en la literatura. Para responder a esta falta de conocimiento, los objetivos de esta tesis son: 1) estudiar y proponer procedimientos experimentales para evaluar los fenómenos de autosanación en hormigón y, 2) evaluar experimentalmente las mejoras producidas al introducir aditivos cristalinos. Esta tesis incluye como ensayos para la determinación de la autosanación: la evaluación del cierre de fisuras, la permeabilidad al agua, flexión a tres puntos y absorción capilar. Además, se han realizado varias campañas experimentales para validar los ensayos propuestos. Posteriormente, estos ensayos se han utilizado para analizar la influencia de varios parámetros, incluyendo entre otros: presencia de aditivos cristalinos, nivel de daño, tiempo necesario para el sanado, composición del hormigón y condiciones de sanado. Finalmente, se analizan los efectos producidos al añadir aditivos cristalinos en hormigón en la fluidez, resistencia e hidratación. Los resultados muestran que el cierre de fisuras es un ensayo eficaz y sencillo para evaluar la autosanación. Sin embargo, la orientación de la fisura durante el sanado ha resultado ser de gran importancia, y no considerar este aspecto puede llevar a conclusiones engañosas. El ensayo de permeabilidad al agua propuesto en este trabajo presenta una buena estabilidad y es fácil de implementar en laboratorios. Además, las relaciones obtenidas entre los parámetros de fisura y la permeabilidad del agua han confirmado la relación cúbica indicada en la literatura. Este trabajo muestra que analizar la eficiencia de autosanado mediante el cierre de fisuras puede llevar a una sobreestimación de la capacidad de sanación, comparada con los resultados obtenidos mediante permeabilidad. Los ensayos de sorptividad resultaron fáciles de implementar, sin embargo, los resultados obtenidos mostraron una alta dispersión y sensibilidad a las variaciones en las fisuras producidas durante el proceso de prefisuración. En cuanto a la evaluación de la recuperación mecánica, los resultados muestran que la evolución de las propiedades del hormigón con el tiempo es un parámetro que debe considerarse, especialmente en fisuras de edades tempranas. En este trabajo se ha obtenido que los aditivos cristalinos potencian las reacciones de autosanación, pero tienen una capacidad limitada. La proximidad de los CA a la industria es un punto positivo para su inclusión como un nuevo tipo de aditivo de hormigón. Sin embargo, los resultados obtenidos en esta tesis indican que se necesitan más análisis para determinar sus efectos completos en hormigón, especialmente con respect / Self-healing materials are materials with the capability to repair their damage autonomously or with minimal help from an external stimulus. In the construction field, the development of self-healing elements will increase the durability of structures and reduce their maintenance and repair actions. Reinforced concrete elements frequently suffer small cracks (< 0.3 mm), not relevant mechanically, but they can be an entrance point for aggressive agents. Concrete has a natural self-healing capability able to seal small cracks, produced by the continuing hydration and carbonation processes. Recent studies have attempted to improve that healing capability and to design specific products to achieve it. These products include, among others: crystalline admixtures, micro- or macro-encapsulated agents, and even the use of bacteria. Crystalline admixtures (CA) are a concrete admixture that is claimed to provide self-healing properties. However, the lack of knowledge on their behavior and self-healing properties limits their usage. In addition, the methods to evaluate the self-healing capability of mortar and concrete are not standardized yet. This complicates the performance of a critical analysis of the different self-healing products and evaluation methods found in the literature. In order to answer to this lack of knowledge, the objectives of this thesis are: 1) to study and propose experimental procedures in order to evaluate self-healing in concrete and, 2) to evaluate experimentally the self-healing enhancements produced when introducing crystalline admixtures. This thesis includes the following tests for the determination of the self-healing: the evaluation of crack closing, water permeability, three point bending tests and capillary absorption test. In addition, several experimental campaigns have been performed with the objective of validating the proposed tests. Afterwards, these methods have been used to analyze the influence of several parameters, including among others: the presence of crystalline admixtures, the damage extent, healing time needed, concrete composition and healing conditions. Finally, the effects that crystalline admixtures produce in concrete are analyzed in terms of slump, strength and hydration. The results show that crack closing is an effective and simple method to evaluate self-healing. However, the orientation of the crack during healing is of great importance, and disregarding this aspect may lead to misleading conclusions. The water permeability method proposed in this work has good stability and it is easy to implement in concrete laboratories. Moreover, the relations obtained between crack parameters and water permeability confirmed the cubic relation, as reported in the literature. This work shows that analyzing healing efficiency by means of crack closing tends to overestimate self-healing if compared with the results obtained by means of water permeability. Sorptivity analysis tests were easy to implement, however, the results obtained in this work showed high dispersion and sensitivity to the variations of the cracks introduced during the precracking process. Regarding the evaluation of mechanical recoveries, the results show that the evolution of concrete properties with time is a parameter of importance that, therefore, should be considered, especially for early age cracks. In this work, crystalline admixtures have been reported as an enhancer of self-healing reactions, but with a limited capacity of enhancement. The proximity of CA to the industry is a positive point to their inclusion as a new type of admixture for concrete. However, the results obtained in this thesis indicate further analyses are needed to determine their full effects on concrete, especially regarding self-healing. / Els materials autosanables són materials amb la capacitat de reparar els seus danys de forma autònoma o amb ajuda mínima d'estímuls externs. En el camp de la construcció, el desenvolupament d'elements autosanables augmentarà la durabilitat de les estructures i reduirà les accions de manteniment i reparació. Els elements de formigó armat presenten freqüentment fissures menudes (< 0.3 mm), no rellevants des del punt de vista mecànic, però poden suposar un punt d'entrada per a agents agressius. El formigó té una capacitat de autosanació capaç de tancar fissures menudes, produïda principalment per la hidratació continuada i la carbonatació. Estudis recents han intentat millorar eixa capacitat i dissenyar productes específics per aconseguir-la. Aquests productes inclouen, entre d'altres, additius cristal·lins, agents micro- o macroencapsulats, i fins i tot l'ús de bacteris. Els additius cristal·lins (CA) són un tipus d'additiu reductor per formigó que es considera que proporciona propietats de autosanació. No obstant, la manca de coneixement sobre el seu comportament limita el seu ús. A més, els mètodes per avaluar la autosanació de formigons encara no estan estandarditzats. Açò complica la realització d'una anàlisi crítica dels diferents productes i mètodes d'avaluació proposats a la literatura. Per respondre a aquesta manca de coneixement, els objectius d'aquesta tesi són: 1) estudiar i proposar procediments experimentals per avaluar els fenòmens d'autosanació en formigó i, 2) avaluar experimentalment les millores produïdes en introduir additius cristal·lins. Aquesta tesi inclou com assajos per a la determinació de l'autosanació: l'avaluació del tancament de fissures, la permeabilitat a l'aigua, flexió a tres punts i absorció capil·lar. A més, s'han realitzat diverses campanyes experimentals per validar els assajos proposats. Posteriorment, aquests assajos s'han utilitzat per analitzar la influència de diversos paràmetres: presència d'additius cristal·lins, nivell de dany, temps necessari per a la sanació, composició del formigó i condicions de sanació. Finalment, s'analitzen els efectes produïts en afegir additius cristal·lins en formigó en fluïdesa, resistència i hidratació. Els resultats mostren que el tancament de fissures és un assaig eficaç i senzill per avaluar l'autosanació. No obstant això, l'orientació de la fissura durant la sanació ha resultat ser de gran importància, i no considerar aquest aspecte pot portar a conclusions enganyoses. L'assaig de permeabilitat a l'aigua proposat presenta una bona estabilitat i és fàcil d'implementar en laboratoris. A més, les relacions obtingudes entre els paràmetres de fissura i la permeabilitat a l'aigua han confirmat la relació cúbica de la literatura. Aquest treball mostra que analitzar l'eficiència de l'autosanació amb el tancament de fissures pot sobreestimar la capacitat de sanació, comparada amb els resultats obtinguts-dues mitjançant permeabilitat a l'aigua. Els assajos de sorptivitat van resultar fàcils d'implementar, però, els resultats obtinguts en aquest treball van mostrar una alta dispersió i sensibilitat a les variacions en les fissures produïdes durant el procés de prefissuració. Pel que fa a l'avaluació de la recuperació mecànica, els resultats mostren que l'evolució de les propietats del formigó amb el temps és un paràmetre d'importància que, per tant, s'ha de considerar, especialment per fissures primerenques. En aquest treball s'ha obtingut que els additius cristal·lins potencien les reaccions d'autosanació, però tenen una capacitat limitada. La proximitat dels CA a la indústria és un punt positiu per a la seva inclusió com un nou tipus d'additiu de formigó. Tanmateix, els resultats obtinguts en aquesta tesi indiquen que calen més anàlisis per determinar els seus efectes complets en formigó, especialment pel que fa a l'autosanació. / Roig Flores, M. (2018). Self-healing concrete: efficiency evaluation and enhancement with crystalline admixtures [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/100082
74

Development of a Self-Sensing and Self-Healing Bolted Joint

Peairs, Daniel M. 17 July 2002 (has links)
A self-sensing and self-healing bolted joint has been developed. This concept encompasses the areas of health monitoring, joint dynamics and smart materials. In order to detect looseness in a joint the impedance health monitoring method is used. A new method of making impedance measurements for health monitoring that greatly reduces the equipment cost and equipment size was developed. This facilitates implementation of the impedance technique in real-life field applications. Several proof of concept experiments are presented and compared to the traditional method of making impedance measurements. Investigations of bolted joint dynamics were conducted. A literature review of bolted joints and their diagnostics is presented. The application of the transfer impedance method is compared to standard modal tests on various bolt tensions. An investigation of damping in bolted joints was also made comparing a bolted and monolithic beam. Practical issues in adaptive bolted joints are investigated. This includes issues on activating/heating SMA actuators, connecting the actuators to the power source, size selection of SMA actuators and insulations. These issues are examined both experimentally and theoretically. / Master of Science
75

Self-Healing of Thermoplastic Poly(Ethylene-co-Methacrylic Acid) Copolymers Following Projectile Puncture

Kalista, Stephen James Jr. 04 March 2004 (has links)
Poly(ethylene-co-methacrylic acid) (EMAA) ionomer polymers carry great potential for use in a wide variety of unique applications due to their property of “self-healing” following projectile impact. Following puncture, certain films based on these materials are observed to “heal”, with the penetration opening recovering to an air-tight condition. Specifically, four polymers of this class were examined, including DuPont™ Surlyn® 8920, Surlyn® 8940, Nucrel® 925, and Nucrel® 960. Though these differ in their amount of ionic content, all expressed a certain degree of self-healing. Thin films were prepared by a compression molding process and punctured at temperatures ranging from room up to that of the melt using a pellet gun. Samples were then assessed for self-healing. A quantitative post-puncture burst-test method examined the strength or quality of the healed site in the four examples. A comparison of this data provided an understanding of the importance of ionic content and the mechanism of puncture healing. Additional damage modes were also examined to determine other cases where healing occurs and the requirements necessary to elicit the healing response. In addition, interesting composite materials consisting of carbon nanotube filled ionomers were fabricated by a melt-mixing process which produced potentially self-healing composites with superior mechanical properties. By comparing peel testing, projectile testing, the quantitative healed strength, and other characteristics, it was determined that healing is not a function of the ionic content of the materials involved. Further, healing was determined to occur due to a synergy of thermomechanical properties facilitated by the addition of the methacrylic acid groups to the polymer backbone. / Master of Science
76

A mussel-inspired antibacterial hydrogel with high cell affinity, toughness, self-healing, and recycling properties for wound healing

Deng, X., Huang, B., Wang, Q., Wu, W., Coates, Philip D., Sefat, Farshid, Lu, C., Zhang, W., Zhang, X. 22 February 2021 (has links)
Yes / Antibacterial hydrogels have been intensively studied due to their wide practical potential in wound healing. However, developing an antibacterial hydrogel that is able to integrate with exceptional mechanical properties, cell affinity, and adhesiveness will remain a major challenge. Herein, a novel hydrogel with antibacterial and superior biocompatibility properties was developed using aluminum ions (Al3+) and alginate− dopamine (Alg-DA) chains to cross-link with the copolymer chains of acrylamide and acrylic acid (PAM) via triple dynamic noncovalent interactions, including coordination, electrostatic interaction, and hydrogen bonding. The cationized nanofibrillated cellulose (CATNFC), which was synthesized by the grafting of long-chain quaternary ammonium salts onto nanofibrillated cellulose (NFC), was utilized innovatively in the preparation of antibacterial hydrogels. Meanwhile, alginate-modified dopamine (Alg-DA) was prepared from dopamine (DA) and alginate. Within the hydrogel, the catechol groups of Alg-DA provided a decent fibroblast cell adhesion to the hydrogel. Additionally, the multitype cross-linking structure within the hydrogel rendered the outstanding mechanical properties, self-healing ability, and recycling in pollution-free ways. The antibacterial test in vitro, cell affinity, and wound healing proved that the as-prepared hydrogel was a potential material with all-around performances in both preventing bacterial infection and promoting tissue regeneration during wound healing processes. / This work was supported by the National Natural Science Foundation of China (32070826 and 51861165203), the Chinese Postdoctoral Science Foundation (2019M650239, 2020T130762), the Sichuan Science and Technology Program (2019YJ0125), the State Key Laboratory of Polymer Materials Engineering (sklpme2019-2-19), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0807), Chongqing Medical Joint Research Project of Chongqing Science and Technology Committee & Health Agency (2020GDRC017), and the RCUK China-UK Science Bridges Program through the Medical Research Council, and the Fundamental Research Funds for the Central Universities.
77

Development of multifunctional polymer composites with self-healing capability

Perin, Davide 16 October 2024 (has links)
Self-healing is an inherent property of living organisms, which poses a significant challenge for materials science. In recent years, self-repair mechanisms observed in plants have been recognized as promising models for the development of bio-inspired self-healing materials. The potential of biomimetic approaches to develop self-healing materials has been widely studied in the literature. In the field of composite materials, the concept of self-healing composites refers to the design of materials capable of autonomously restoring lost mechanical properties. The advantages of self-healing composites are numerous, including reduced maintenance and repair costs, and improved service life, leading to enhanced sustainability. Two types of self-healing composites have been extensively studied: extrinsic and intrinsic. This PhD Thesis focuses on investigating the intrinsic self-healing mechanism within polymer composites, which involves the ability of polymer matrices to heal micro-damage, such as cracks, under external stimuli. This Thesis aims to develop a thermoplastic matrix possessing self-healing properties using polyamide 6 (PA6), which is the most commonly utilized thermoplastic polymer in the production of thermoplastic composites. As there is a lack of systematic investigation on this particular research topic in the scientific literature, various combinations of PA6 and thermoplastic healing agents, along with different types of compatibilizers, were employed. The optimized matrix has been used for the manufacture of both short and long-carbon fiber composites. This PhD Thesis not only focuses on the production of thermoplastic self-healing composites but also investigates thermosetting intrinsic self-healing composites. Two distinct systems are examined, and in both cases, thermoplastic healing agents has been applied by depositing them on top of the fiber fabrics. A crucial aspect of this PhD Thesis is the fractography analysis, which enables an understanding of the reasons behind the failure of several healing mechanisms and the factors contributing to the success of other healing mechanisms. The PhD Thesis is divided into eight Chapters. Chapter I highlights the aim of this work together with the outline of the Thesis. Chapter II provides a brief introduction and the theoretical background of self-healing composites. Chapter III details all the experimental techniques utilized for the characterization of the polymer blends and for the characterization of the prepared composites. All the obtained results are thoroughly reported in Chapters IV-VIII. Chapter IV presents the results of PA6 with the combination of two different healing agents, i.e., Polycaprolactone (PCL) and Cyclic olefinic copolymer (COC) and it is subdivided into four different parts. The first investigated system was PA6/PCL and the latter was melt compounded with PA6 in different amounts. PCL caused a decrease in the mechanical properties of PA6, due to its immiscibility and low mechanical properties. Nevertheless, acceptable fracture toughness values in quasi-static mode were obtained. Samples were thermally mended at 80 and 100 °C, and the healing efficiency (HE) was assessed by comparing the fracture toughness of virgin and repaired samples both in quasi-static and in impact mode. The blend with a PCL content of 30 wt% showed limited HE values (up to 6%) in quasi-static mode, while interesting HE values (53%) were detected under impact conditions. This discrepancy was explained through microstructural analysis and correlated to a different fracture morphology. In fact, under quasi-static mode, the PA6 matrix was severely plasticized, while under impact a brittle fracture surface was obtained favoring thus the flow of PCL during the thermal healing process. The second investigated system was PA6/COC and the latter was melt compounded with PA6 in different amounts. From scanning electron microscope micrographs, it was possible to highlight the immiscibility and the lack of interfacial adhesion between the constituents. The HE of the system was evaluated by comparing the fracture toughness of the produced blends, both in quasi-static and impact mode, before and after the healing process performed at 140°C by applying a pressure of 0.5 MPa. Through the addition of 30 wt% of COC, the fracture toughness of the virgin samples slightly decreased, passing from 2.3 MPa·m1/2 of neat PA6 to 2.1 MPa·m1/2. However, the presence of the 30 wt% of COC homogeneously distributed within the PA6 matrix led to a HE of 11% in quasi-static mode and 35% in impact mode. From the analysis of these preliminary systems, it was decided that the best matrix/healing agent combination with the highest potential was the one reported by PA6/COC system. At this aim, since the lack of interfacial adhesion between the two different constituents severely decreased the healing performances of the system, different types of compatibilizers were selected in order to enhance the interphase between PA6 and COC. Three different types of compatibilizers were selected, i.e., poly(ethylene)-graft-maleic anhydride (PE-g-MAH), polyolefin elastomer-graft-maleic anhydride (POE-g-MAH), and ethylene glycidyl methacrylate (E-GMA), and thoroughly investigated in the third subchapter. The dynamic rheological analysis revealed that E-GMA played a crucial role in reducing interfacial tension and promoting PA6 chain entanglement with COC domains. Mechanical tests showed that PE-g-MAH and POE-g-MAH compatibilizers enhanced elongation at break, while E-GMA had a milder effect. A thermal healing process at 140 °C for 1 h was carried out on specimens broken in fracture toughness tests, performed under quasi-static and impact conditions, and HE was evaluated as the ratio of critical stress intensity factors of healed and virgin samples. All the compatibilizers increased HE, especially E-GMA, achieving 29% and 68% in quasi-static and impact conditions, respectively. SEM images of specimens tested in quasi-static conditions showed that all the compatibilizers induced PA6 plasticization and crack corrugation, thus hindering COC flow in the crack zone. Conversely, under impact conditions, E-GMA led to the formation of brittle fractures with planar surfaces, promoting COC flow and thus higher HE values. This study demonstrated that compatibilizers, loading mode, and fracture surface morphologies strongly influenced self-healing performance. From this study, it was evident that the best compatibilizer, in terms of HE performance, was E-GMA. For these reasons, it was decided to perform a fine-tuning of both the E-GMA content in the PA6/COC matrix and also a tuning of the temperature of the healing process. The experimental results of this investigation are reported in the fourth subchapter. From the capillary rheometer analysis, it was possible to assess that the addition of E-GMA improved both the melt strength (MS) and the breaking stretching ratio (BSR). The enhancement of these parameters reflected better processability and an improved capability of forming film by the optimized blend. From the performed fracture toughness tests, both in quasi-static mode and impact mode, it was possible to obtain, utilizing analysis of variance (ANOVA) statistics, the optimum E-GMA content, and healing temperature. The HE values in quasi-static mode at a healing temperature of 160 °C passed from 12 % for the non-compatibilized blend up to 38 % for the blend containing 5 wt% E-GMA. Passing to the performance in impact mode, the HE values at a healing temperature of 160 °C pass from 57 % for the non-compatibilized blend up to 82 % for the blend containing 5 wt% E-GMA. The differences in these two HE values for quasi-static conditions and impact mode were investigated through field emission scanning electron microscopy and it was noticed that the specimens tested in quasi-static mode showed severe plasticized fractured surfaces. On the other hand, the specimens tested in impact mode reported brittle fractured surfaces. The differences between the severely plasticized surfaces and the brittle surfaces explained the difference between the HE values of the two different tests. Severely plasticized surfaces hindered the flow of the healing agent during the thermal mending process, while the brittle surfaces allowed a better distribution of the healing agent during the thermal mending process. In conclusion, from the performed analysis, it was possible to obtain an optimized thermoplastic self-healing matrix to be used in structural composite applications. Chapter V presents the results of both short and long-carbon fiber composites produced by using the optimized self-healing thermoplastic blend detected in Chapter IV. The first investigated system was composed of short carbon fiber composite with self-healing properties. All the prepared compositions were produced in collaboration with the University of Pisa by means of a semi-industrial extruder, followed by an injection molding machine. Thanks to the remarkably high quality of the prepared specimens, the thermal mending capability was assessed through Charpy impact testing and plane-strain fracture toughness tests. The HE values of the self-healing composites were remarkable, and the system was successfully proven with HE values of approximately 10 % in quasi-static mode and approximately 50 % in Charpy impact tests. From the fractography analysis, it was possible to assess that the healing agent was capable of flowing in the crack plane but since, in both tests, a catastrophic rupture took place, the fiber integrity was thus lost. Thus, it was decided to perform fatigue testing and implement a statistical method found in the literature. In particular, a damage criterion was adopted to predict the fatigue life of these materials. Through the presented statistical approach, the Wöhler curves for both reinforced systems, i.e., the neat containing only PA6 and short carbon fibers and the self-healing short carbon fiber composites, were produced. Through the damaging/healing process, it was possible to highlight that the mending process was able to improve the fatigue life of the self-healing composites by approximately 77 %. The obtained results highlighted the potential of the self-healing composites in prolonging the fatigue life and therefore enhancing the working life of structural components. From the presented results it was highlighted that the prepared self-healing thermoplastic blend was capable of effectively repairing micro-damages and not catastrophic damages. The second investigated system was composed of long carbon fiber composites with self-healing properties prepared starting from the thermoplastic blend developed in Chapter IV. Long carbon fiber composites are prepared through film stacking and hot pressing process, the thermoplastic thin films were produced in collaboration with Professor Pietro Russo from the University of Naples by using an extruder equipped with a calender. A thorough analysis of the thermal and mechanical properties of these laminates highlighted the repair capabilities of PA6 and self-healing blend long carbon fiber laminates. The optical microscope revealed matrix-rich and fiber-rich regions, which could potentially undermine the mechanical integrity of the laminates due to incomplete impregnation of the carbon fiber by the matrices. However, pycnometer analysis confirmed that the void percentage within the composites remained acceptable for structural applications. The evaluation of the interlaminar shear strength (ILSS) through short beam shear (SBS) tests highlighted that there was no difference between the two different laminates. Through the thermal mending process, it was possible to demonstrate that the neat laminates were not able, as expected, to recover their mechanical properties. On the other hand, the self-healing laminates were capable of restoring the mechanical properties with a healing efficiency value of 104 %. From the analysis of the fracture surfaces, before and after the thermal mending process, it was possible to understand the reason behind the high value of healing efficiency. SBS tests induced mainly micro damages in the matrix and delamination. The damages were totally recovered upon the thermal mending process since there were no cracks or evident delamination on the observed specimens. In conclusion, this Chapter substantiated the efficacy of the developed thermoplastic self-healing blend in producing intrinsic self-healing composites. The self-healing laminates, with their superior tensile properties and robust self-healing performance, highlighted their potential for advanced applications in structural components with enhanced working life. Chapter VI reports the two different studies conducted on intrinsic self-healing thermosetting composites. The first investigated system was focused on the self-healing behavior of carbon fiber (CF) reinforced composites by depositing jet-spun COC meshes on dry carbon fiber plies before lamination with epoxy resin (EP). Three different laminates were prepared, including neat EP/CF and two composites with 4 wt.% and 8 wt.% in the form of a jet-spun COC network. The introduction of COC mesh reduced flexural stress by 26% and interlaminar shear strength by 50%. Mode I interlaminar fracture toughness was evaluated and specimens were mended at 110 °C by resistive heating generated by an electrical current flowing within the samples. The laminates containing 8 wt% COC reported a healing efficiency, evaluated as the ratio between the GIC and the maximum load of virgin and healed samples, of 9.4% and 33.7%, respectively. Fractography analysis highlighted the poor adhesion between the COC mesh and EP matrix, and several COC microfibers were trapped inside the epoxy matrix, hindering their diffusion inside the crack zone, which limited the healing capability of the prepared laminates. The second investigated system was based on the intrinsic-extrinsic self-healing laminates in which different healing agents were directly 3D printed on top of the fiber fabrics. Different amounts of thermoplastic healing agents were deposited through a specifically designed 3D printed process on top of fiber fabrics and with different percentages of covered area. Through vacuum assisted resin transfer molding (VARTM) process it was possible to produce, two reference laminates containing only carbon fibers and glass fibers, and laminates containing polyamide 11 (PA11), thermoplastic polyurethane (TPU) and PA11 with carbon nanotubes (PA11CNT). All the samples were labeled according to the following code “XX_YY_ZZ”, where “XX” stands for the selected reinforcements (CF or GF), “YY” stands for the thermoplastic polymer utilized, and “ZZ” stands for the percentage of the covered area by the thermoplastic polymers. A complete characterization of the thermal and mechanical properties was performed to assess the effect of the thermoplastic insertion on the physical properties of the composites. From the measurement of mode I fracture toughness, it was possible to assess the extremely positive effect of the healing agent on the GIC values. CF_PA11 laminates were demonstrated to be the best systems thanks to the toughening effect generated in the thermoplastic enriched plane. The fracture toughness was 674% higher with respect to the neat reference laminates in the case of the CF_PA11_36 system (GIC = 1641 J/m2). This exceptional result was attributable to the enhanced adhesion of the deposited thermoplastic pattern within the midplane laminae, while the large data scattering is related to the concomitant delamination processes induced in the adjacent planes. The same trend was recorded also for the CF_PA11_24 and the CF_PA11_12 laminates with a fracture toughness increase of 516 % and 359 %, respectively. On the other hand, for the TPU and PA11+CNTs laminates, the fracture toughness was marginally affected due to the possible degradation of TPU and the lack of interfacial adhesion of the PA11+CNTs thermoplastic healing agent with the GF. The specimens used for the determination of the mode I fracture toughness were healed at a temperature of 210 °C allowing the flow of the introduced healing agent in the crack plane thus restoring the loss of mechanical properties. The healing efficiency was successfully determined by calculating the variation of the fracture toughness upon the thermally activated healing cycles. In the considered analysis, the best systems were proved to be the CF_PA11_36 and the GF_PA11_CNTs laminates with a healing efficiency of 74%. Nevertheless, the best system was the one presenting the PA11 thermoplastic healing agent due to the much higher virgin fracture toughness value. Since the best system was the one composed of CF_PA11 laminates, several healing cycles were performed in order to assess the healing efficiency also for subsequent damage/healing processes. By evaluating the healing efficiency through the fracture toughness, it was possible to assess recovery of almost 50% after the three subsequent healing cycles for the CF_PA11_36 system. In conclusion, the results reported in this Chapter demonstrated that CF/epoxy laminates enriched with the 36% covered area pattern of PA11_20C were the best system in terms of both healing efficiency and fracture toughness. Chapter VII reported the final conclusion of the PhD Thesis and the general evaluation of the performances of the produced systems. Chapter VIII reported a summary of all the side activities performed during the PhD program.
78

Temperature Dependent Size Exclusion Chromatography for Investigating Thermoreversibly Bonding Polymer Systems

Brandt, Josef 01 August 2016 (has links) (PDF)
Polymers capable of thermally controlled reversible bonding reactions are promising candidates for stimuli responsive materials, as required for self-healing or drug delivery materials. In order to investigate how the dynamic reactions can be controlled, effective analytical tools are demanded that are capable of analyzing not only the polymers but can also monitor the respective bonding reactions. Herein, we employ size exclusion chromatography in a newly developed temperature dependent mode (TD SEC) for the in situ characterization of polymers that undergo retro Diels-Alder (rDA) reaction at temperatures higher than 60 °C. Monitoring the evolution of the molar mass distribution of the polymers during the rDA reaction and evaluating the data quantitatively gives detailed information about the extent of the reaction and allows elucidating structural parameters that can be used for controlling the polymers debonding behavior. In contrast to spectroscopic techniques, TD SEC analyzes only the size of the polymers, hence the polymers do not need to fulfill any particular requirements (e.g. presence of detectable functional groups) but only need to be soluble in the TD SEC, which makes the method universally applicable. Side effects that might bias the results are minimized by using a high temperature chromatograph that allows performing the analysis in a broad temperature range (60 – 200 °C) and in different solvents. Thus, the analysis can be performed under the exact conditions that are required for the bonding reactions and an in situ image is provided.
79

New way of healing : experienced counsellors' perceptions of the influence of ch’i-related exercises on counselling practice in Taiwan

Liou, Chin-Ping January 2014 (has links)
This study examines how Taiwanese senior counsellors with substantial experience of ch’i-related exercise (CRE) perceived the influence of their regular CRE on their counselling practice. I am interested in the perceived influence of CRE on both self-care and professional practice. In this studyn this studyn this study n this study n this study n this study, CRE, CRE, CRE, CRE, CRE refers to any refers to any refers to any refers to any ch'i enhancing exercise that coordinates movement with breathing and inner concentration wherein ch'i is a first order concept used by practitioners and regarded by them as an embodiment of ideas related to human life and human existence and able to be experienced and refined through any ch'i related exercise. CRE is a set of practices and an intrinsic part of local culture in Taiwan which in recent years, has become popular practice in Taiwanese society. There are growing numbers of counselling professionals involved in regular CRE in recent years. Studies examining the effects of CRE indicate the benefits of CRE on practitioners' global health and personal growth. However, no previous study has investigated the influence of the long-term regular use of CRE on counsellors‟ self-care and counselling practice. The narrative research design for this study was developed from a post-structural theoretical perspective located in the domain of social constructivism. The data were co-constructed between the researcher and 12 senior Taiwanese counsellors with substantial CRE experience using a semi-structured in-depth interview approach. Interview data were analysed using the structure-based approach developed by William Labov in the field of socio-linguistics. The study reveals an overall benefit of regular involvement in CRE for practitioners' global wellbeing and personal growth counsellor' self-care. The research findings also reveals the potential of ch’i to be used as a way of expressing health and illness and a way of understanding in therapy and CRE to be lived out in therapy as an embodiment. I argue that collectively the narratives, as a whole, give evidence of an increasing integratin of the ideas and practices of ch’i into counselling practice in contemporary Taiwan. This might even make up a new form of integrated and culturally appropriate practice, what I term "a new way of healing." These are therapeutic practices which value the potential of CRE for counsellor's self-care and personal growth; recognize the integral whole of the human person; promote conscious use of the knowledge and experience of ch’i and CRE in therapy as an important aspect of the therapeutic use of self. Implications for practice such as the potential of CRE to be introduced into counsellor training programmes for counsellors' preparation or ongoing education are provided. Recommendations for future research such as the development of a new healing modality based on the research findings are offered.
80

Synergies in Biolubrication

Raj, Akanksha January 2017 (has links)
The objective of this thesis was to advance understanding in the field of biolubrication, finding inspiration from the human synovial joints. This was addressed by investigating the association of key biolubricants and the resulting lubrication performance. Techniques employed during the course of this work were Atomic force microscopy (AFM), Quartz crystal microbalance with dissipation monitoring (QCM-D), X-ray reflectivity (XRR). Key synovial fluid and cartilage components like dipalmitoylphosphatidylcholine (DPPC), hyaluronan (HA), lubricin, and cartilage oligomeric matrix protein (COMP) have been used in the investigations. Focus was towards two lubrication couples; DPPC-hyaluronan and COMP-lubricin. DPPC-hyaluronan mixtures were probed on hydrophilic silica surfaces and COMP-lubricin association structures were explored on weakly hydrophobic poly (methyl methacrylate) (PMMA) surfaces. Investigations of the COMP-lubricin pair revealed that individually these components are unable to reach desired lubrication. However in combination, COMP facilitates firm attachment of lubricin to the PMMA surface in a favourable confirmation that imparts low friction coefficient. DPPC and hyaluronan combined impart lubrication advantage over lone DPPC bilayers. Hyaluronan provides a reservoir of DPPC on the surface and consequently self-healing ability. Other factors like temperature, presence of calcium ions, molecular weight of hyaluronan, and pressure were also explored. DPPC bilayers at higher temperature had higher load bearing capacity. Association between DPPC Langmuir layers and hyaluronan was enhanced in the presence of calcium ions, and lower molecular weight hyaluronan had a stronger tendency to bind to DPPC. At high pressures, DPPC-hyaluronan layers were more stable compared to lone DPPC bilayers. / <p>QC 20170210</p>

Page generated in 0.2609 seconds