Spelling suggestions: "subject:"[een] SEMI-SUPERVISED LEARNING"" "subject:"[enn] SEMI-SUPERVISED LEARNING""
91 |
Urban Seismic Event Detection: A Non-Invasive Deep Learning ApproachParth Sagar Hasabnis (18424092) 23 April 2024 (has links)
<p dir="ltr">As cameras increasingly populate urban environments for surveillance, the threat of data breaches and losses escalates as well. The rapid advancements in generative Artificial Intelligence have greatly simplified the replication of individuals’ appearances from video footage. This capability poses a grave risk as malicious entities can exploit it for various nefarious purposes, including identity theft and tracking individuals’ daily activities to facilitate theft or burglary.</p><p dir="ltr">To reduce reliance on video surveillance systems, this study introduces Urban Seismic Event Detection (USED), a deep learning-based technique aimed at extracting information about urban seismic events. Our approach involves synthesizing training data through a small batch of manually labelled field data. Additionally, we explore the utilization of unlabeled field data in training through semi-supervised learning, with the implementation of a mean-teacher approach. We also introduce pre-processing and post-processing techniques tailored to seismic data. Subsequently, we evaluate the trained models using synthetic, real, and unlabeled data and compare the results with recent statistical methods. Finally, we discuss the insights gained and the limitations encountered in our approach, while also proposing potential avenues for future research.</p>
|
92 |
Semi-Supervised Deep Learning Approach for Transportation Mode Identification Using GPS Trajectory DataDabiri, Sina 11 December 2018 (has links)
Identification of travelers' transportation modes is a fundamental step for various problems that arise in the domain of transportation such as travel demand analysis, transport planning, and traffic management. This thesis aims to identify travelers' transportation modes purely based on their GPS trajectories. First, a segmentation process is developed to partition a user's trip into GPS segments with only one transportation mode. A majority of studies have proposed mode inference models based on hand-crafted features, which might be vulnerable to traffic and environmental conditions. Furthermore, the classification task in almost all models have been performed in a supervised fashion while a large amount of unlabeled GPS trajectories has remained unused. Accordingly, a deep SEmi-Supervised Convolutional Autoencoder (SECA) architecture is proposed to not only automatically extract relevant features from GPS segments but also exploit useful information in unlabeled data. The SECA integrates a convolutional-deconvolutional autoencoder and a convolutional neural network into a unified framework to concurrently perform supervised and unsupervised learning. The two components are simultaneously trained using both labeled and unlabeled GPS segments, which have already been converted into an efficient representation for the convolutional operation. An optimum schedule for varying the balancing parameters between reconstruction and classification errors are also implemented. The performance of the proposed SECA model, trip segmentation, the method for converting a raw trajectory into a new representation, the hyperparameter schedule, and the model configuration are evaluated by comparing to several baselines and alternatives for various amounts of labeled and unlabeled data. The experimental results demonstrate the superiority of the proposed model over the state-of-the-art semi-supervised and supervised methods with respect to metrics such as accuracy and F-measure. / Master of Science / Identifying users' transportation modes (e.g., bike, bus, train, and car) is a key step towards many transportation related problems including (but not limited to) transport planning, transit demand analysis, auto ownership, and transportation emissions analysis. Traditionally, the information for analyzing travelers' behavior for choosing transport mode(s) was obtained through travel surveys. High cost, low-response rate, time-consuming manual data collection, and misreporting are the main demerits of the survey-based approaches. With the rapid growth of ubiquitous GPS-enabled devices (e.g., smartphones), a constant stream of users' trajectory data can be recorded. A user's GPS trajectory is a sequence of GPS points, recorded by means of a GPS-enabled device, in which a GPS point contains the information of the device geographic location at a particular moment. In this research, users' GPS trajectories, rather than traditional resources, are harnessed to predict their transportation mode by means of statistical models.
With respect to the statistical models, a wide range of studies have developed travel mode detection models using on hand-designed attributes and classical learning techniques. Nonetheless, hand-crafted features cause some main shortcomings including vulnerability to traffic uncertainties and biased engineering justification in generating effective features. A potential solution to address these issues is by leveraging deep learning frameworks that are capable of capturing abstract features from the raw input in an automated fashion. Thus, in this thesis, deep learning architectures are exploited in order to identify transport modes based on only raw GPS tracks. It is worth noting that a significant portion of trajectories in GPS data might not be annotated by a transport mode and the acquisition of labeled data is a more expensive and labor-intensive task in comparison with collecting unlabeled data. Thus, utilizing the unlabeled GPS trajectory (i.e., the GPS trajectories that have not been annotated by a transport mode) is a cost-effective approach for improving the prediction quality of the travel mode detection model. Therefore, the unlabeled GPS data are also leveraged by developing a novel deep-learning architecture that is capable of extracting information from both labeled and unlabeled data. The experimental results demonstrate the superiority of the proposed models over the state-of-the-art methods in literature with respect to several performance metrics.
|
93 |
Machine learning for complex evaluation and detection of combustion health of Industrial Gas turbinesMshaleh, Mohammad January 2024 (has links)
This study addresses the challenge of identifying anomalies within multivariate time series data, focusing specifically on the operational parameters of gas turbine combustion systems. In search of an effective detection method, the research explores the application of three distinct machine learning methods: the Long Short-Term Memory (LSTM) autoencoder, the Self-Organizing Map (SOM), and the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Through the experiment, these models are evaluated to determine their efficacy in anomaly detection. The findings show that the LSTM autoencoder not only surpasses its counterparts in performance metrics but also shows a unique capability to identify the underlying causes of detected anomalies. This paper delves into the comparative analysis of these techniques and discusses the implications of the models in maintaining the reliability and safety of gas turbine operations.
|
94 |
Web genre classification using feature selection and semi-supervised learningChetry, Roshan January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / Doina Caragea / As the web pages continuously change and their number grows exponentially, the need for genre classification of web pages also increases. One simple reason for this is given by the need to group web pages into various genre categories in order to reduce the complexities of various web tasks (e.g., search). Experts unanimously agree on the huge potential of genre classification of web pages. However, while everybody agrees that genre classification of web pages is necessary, researchers face problems in finding enough labeled data to perform supervised classification of web pages into various genres. The high cost of skilled manual labor, rapid changing nature of web and never ending growth of web pages are the main reasons for the limited amount of labeled data. On the contrary unlabeled data can be acquired relatively inexpensively in comparison to labeled data. This suggests the use of semi-supervised learning approaches for genre classification, instead of using supervised approaches. Semi-supervised learning makes use of both labeled and unlabeled data for training - typically a small amount of labeled data and a large amount of unlabeled data. Semi-supervised learning have been extensively used in text classification problems. Given the link structure of the web, for web-page classification one can use link features in addition to the content features that are used for general text classification. Hence, the feature set corresponding to web-pages can be easily divided into two views, namely content and link based feature views. Intuitively, the two feature views are conditionally independent given the genre category and have the ability to predict the class on their own. The scarcity of labeled data, availability of large amounts of unlabeled data, richer set of features as compared to the conventional text classification tasks (specifically complementary and sufficient views of features) have encouraged us to use co-training as a tool to perform semi-supervised learning. During co-training labeled examples represented using the two views are used to learn distinct classifiers, which keep improving at each iteration by sharing the most confident predictions on the unlabeled data. In this work, we classify web-pages of .eu domain consisting of 1232 labeled host and 20000 unlabeled hosts (provided by the European Archive Foundation [Benczur et al., 2010]) into six different genres, using co-training. We compare our results with the results produced by standard supervised methods. We find that co-training can be an effective and cheap alternative to costly supervised learning. This is mainly due to the two independent and complementary feature sets of web: content based features and link based features.
|
95 |
Méthodes d’apprentissage semi-supervisé basé sur les graphes et détection rapide des nœuds centraux / Graph-based semi-supervised learning methods and quick detection of central nodesSokol, Marina 29 April 2014 (has links)
Les méthodes d'apprentissage semi-supervisé constituent une catégorie de méthodes d'apprentissage automatique qui combinent points étiquetés et données non labellisées pour construire le classifieur. Dans la première partie de la thèse, nous proposons un formalisme d'optimisation général, commun à l'ensemble des méthodes d'apprentissage semi-supervisé et en particulier aux Laplacien Standard, Laplacien Normalisé et PageRank. En utilisant la théorie des marches aléatoires, nous caractérisons les différences majeures entre méthodes d'apprentissage semi-supervisé et nous définissons des critères opérationnels pour guider le choix des paramètres du noyau ainsi que des points étiquetés. Nous illustrons la portée des résultats théoriques obtenus sur des données synthétiques et réelles, comme par exemple la classification par le contenu et par utilisateurs des systèmes pair-à-pair. Cette application montre de façon édifiante que la famille de méthodes proposée passe parfaitement à l’échelle. Les algorithmes développés dans la deuxième partie de la thèse peuvent être appliquées pour la sélection des données étiquetées, mais également aux autres applications dans la recherche d'information. Plus précisément, nous proposons des algorithmes randomisés pour la détection rapide des nœuds de grands degrés et des nœuds avec de grandes valeurs de PageRank personnalisé. A la fin de la thèse, nous proposons une nouvelle mesure de centralité, qui généralise à la fois la centralité d'intermédiarité et PageRank. Cette nouvelle mesure est particulièrement bien adaptée pour la détection de la vulnérabilité de réseau. / Semi-supervised learning methods constitute a category of machine learning methods which use labelled points together with unlabeled data to tune the classifier. The main idea of the semi-supervised methods is based on an assumption that the classification function should change smoothly over a similarity graph. In the first part of the thesis, we propose a generalized optimization approach for the graph-based semi-supervised learning which implies as particular cases the Standard Laplacian, Normalized Laplacian and PageRank based methods. Using random walk theory, we provide insights about the differences among the graph-based semi-supervised learning methods and give recommendations for the choice of the kernel parameters and labelled points. We have illustrated all theoretical results with the help of synthetic and real data. As one example of real data we consider classification of content and users in P2P systems. This application demonstrates that the proposed family of methods scales very well with the volume of data. The second part of the thesis is devoted to quick detection of network central nodes. The algorithms developed in the second part of the thesis can be applied for the selections of quality labelled data but also have other applications in information retrieval. Specifically, we propose random walk based algorithms for quick detection of large degree nodes and nodes with large values of Personalized PageRank. Finally, in the end of the thesis we suggest new centrality measure, which generalizes both the current flow betweenness centrality and PageRank. This new measure is particularly well suited for detection of network vulnerability.
|
96 |
Mineração de opiniões baseada em aspectos para revisões de produtos e serviços / Aspect-based Opinion Mining for Reviews of Products and ServicesYugoshi, Ivone Penque Matsuno 27 April 2018 (has links)
A Mineração de Opiniões é um processo que tem por objetivo extrair as opiniões e suas polaridades de sentimentos expressas em textos em língua natural. Essa área de pesquisa tem ganhado destaque devido ao volume de opiniões que os usuários compartilham na Internet, como revisões em sites de e-commerce, rede sociais e tweets. A Mineração de Opiniões baseada em Aspectos é uma alternativa promissora para analisar a polaridade do sentimento em um maior nível de detalhes. Os métodos tradicionais para extração de aspectos e classificação de sentimentos exigem a participação de especialistas de domínio para criar léxicos ou definir regras de extração para diferentes idiomas e domínios. Além disso, tais métodos usualmente exploram algoritmos de aprendizado supervisionado, porém exigem um grande conjunto de dados rotulados para induzir um modelo de classificação. Os desafios desta tese de doutorado estão relacionados a como diminuir a necessidade de grande esforço humano tanto para rotular dados, quanto para tratar a dependência de domínio para as tarefas de extração de aspectos e classificação de sentimentos dos aspectos para Mineração de Opiniões. Para reduzir a necessidade de grande quantidade de exemplos rotulados foi proposta uma abordagem semissupervisionada, denominada por Aspect-based Sentiment Propagation on Heterogeneous Networks (ASPHN) em que são propostas representações de textos nas quais os atributos linguísticos, os aspectos candidatos e os rótulos de sentimentos são modelados por meio de redes heterogêneas. Para redução dos esforços para construir recursos específicos de domínio foi proposta uma abordagem baseada em aprendizado por transferência entre domínios denominada Cross-Domain Aspect Label Propagation through Heterogeneous Networks (CD-ALPHN) que utiliza dados rotulados de outros domínios para suportar tarefas de aprendizado em domínios sem dados rotulados. Nessa abordagem são propostos uma representação em uma rede heterogênea e um método de propagação de rótulos. Os vértices da rede são os aspectos rotulados do domínio de origem, os atributos linguísticos e os candidatos a aspectos do domínio alvo. Além disso, foram analisados métodos de extração de aspectos e propostas algumas variações para considerar cenários nãosupervisionados e independentes de domínio. As soluções propostas nesta tese de doutorado foram avaliadas e comparadas as do estado-da-arte utilizando coleções de revisões de diferentes produtos e serviços. Os resultados obtidos nas avaliações experimentais são competitivos e demonstram que as soluções propostas são promissoras. / Opinion Mining is a process that aims to extract opinions and their sentiment polarities expressed in natural language texts. This area of research has been in the highlight because of the volume of opinions that users share on the available visualization means on the Internet (reviews on e-commerce sites, social networks, tweets, others). Aspect-based Opinion Mining is a promising alternative for analyzing the sentiment polarity on a high level of detail. The traditional methods for aspect extraction and sentiment classification require the participation of domain experts to create lexicons or define extraction rules for different languages and domains. In addition, such methods usually exploit supervised machine learning algorithms, but require a large set of labeled data to induce a classification model. The challenges of this doctoral thesis are related on to how to reduce the need for great human effort both: (i) to label data; and (ii) to treat domain dependency for the tasks of aspect extraction and aspect sentiment classification for Opinion Mining. In order to reduce the need for a large number of labeled examples, a semi-supervised approach was proposed, called Aspect-based Sentiment Propagation on Heterogeneous Networks (ASPHN). In this approach, text representations are proposed in which linguistic attributes, candidate aspects and sentiment labels are modeled by heterogeneous networks. Also, a cross-domain learning approach called Cross-Domain Aspect Label Propagation through Heterogeneous Networks (CD-ALPHN) is proposed in order to reduce efforts to build domain-specific resources, This approach uses labeled data from other domains to support learning tasks in domains without labeled data. A representation in a heterogeneous network and a label propagation method are proposed in this cross-domain learning approach. The vertices of the network are the labeled aspects of the source domain, the linguistic attributes, and the candidate aspects of the target domain. In addition, aspect extraction methods were analyzed and some variations were proposed to consider unsupervised and domain independent scenarios. The solutions proposed in this doctoral thesis were evaluated and compared to the state-of-the-art solutions using collections of different product and service reviews. The results obtained in the experimental evaluations are competitive and demonstrate that the proposed solutions are promising.
|
97 |
Construção de redes baseadas em vizinhança para o aprendizado semissupervisionado / Graph construction based on neighborhood for semisupervisedBerton, Lilian 25 January 2016 (has links)
Com o aumento da capacidade de armazenamento, as bases de dados são cada vez maiores e, em muitas situações, apenas um pequeno subconjunto de itens de dados pode ser rotulado. Isto acontece devido ao processo de rotulagem ser frequentemente caro, demorado e necessitar do envolvimento de especialistas humanos. Com isso, diversos algoritmos semissupervisionados foram propostos, mostrando que é possível obter bons resultados empregando conhecimento prévio, relativo à pequena fração de dados rotulados. Dentre esses algoritmos, os que têm ganhado bastante destaque na área têm sido aqueles baseados em redes. Tal interesse, justifica-se pelas vantagens oferecidas pela representação via redes, tais como, a possibilidade de capturar a estrutura topológica dos dados, representar estruturas hierárquicas, bem como modelar manifolds no espaço multi-dimensional. No entanto, existe uma grande quantidade de dados representados em tabelas atributo-valor, nos quais não se poderia aplicar os algoritmos baseados em redes sem antes construir uma rede a partir desses dados. Como a geração das redes, assim como sua relação com o desempenho dos algoritmos têm sido pouco estudadas, esta tese investigou esses aspectos e propôs novos métodos para construção de redes, considerando características ainda não exploradas na literatura. Foram propostos três métodos para construção de redes com diferentes topologias: 1) S-kNN (Sequential k Nearest Neighbors), que gera redes regulares; 2) GBILI (Graph Based on the Informativeness of Labeled Instances) e RGCLI (Robust Graph that Considers Labeled Instances), que exploram os rótulos disponíveis gerando redes com distribuição de grau lei de potência; 3) GBLP (Graph Based on Link Prediction), que se baseia em medidas de predição de links gerando redes com propriedades mundo-pequeno. As estratégias de construção de redes propostas foram analisadas por meio de medidas de teoria dos grafos e redes complexas e validadas por meio da classificação semissupervisionada. Os métodos foram aplicados em benchmarks da área e também na classificação de gêneros musicais e segmentação de imagens. Os resultados mostram que a topologia da rede influencia diretamente os algoritmos de classificação e as estratégias propostas alcançam boa acurácia. / With the increase capacity of storage, databases are getting larger and, in many situations, only a small subset of data items can be labeled. This happens because the labeling process is often expensive, time consuming and requires the involvement of human experts. Hence, several semi-supervised algorithms have been proposed, showing that it is possible to achieve good results by using prior knowledge. Among these algorithms, those based on graphs have gained prominence in the area. Such interest is justified by the benefits provided by the representation via graphs, such as the ability to capture the topological structure of the data, represent hierarchical structures, as well as model manifold in high dimensional spaces. Nevertheless, most of available data is represented by attribute-value tables, making necessary the study of graph construction techniques in order to convert these tabular data into graphs for applying such algorithms. As the generation of the weight matrix and the sparse graph, and their relation to the performance of the algorithms have been little studied, this thesis investigated these aspects and proposed new methods for graph construction with characteristics litle explored in the literature yet. We have proposed three methods for graph construction with different topologies: 1) S-kNN (Sequential k Nearest Neighbors) that generates regular graphs; 2) GBILI (Graph Based on the informativeness of Labeled Instances) and RGCLI (Robust Graph that Considers Labeled Instances), which exploit the labels available generating power-law graphs; 3) GBLP (Graph Based on Link Prediction), which are based on link prediction measures and generates small-world graphs. The strategies proposed were analyzed by graph theory and complex networks measures and validated in semi-supervised classification tasks. The methods were applied in benchmarks of the area and also in the music genre classification and image segmentation. The results show that the topology of the graph directly affects the classification algorithms and the proposed strategies achieve good accuracy.
|
98 |
Aprendizado semi-supervisionado para o tratamento de incerteza na rotulação de dados de química medicinal / Semi supervised learning for uncertainty on medicinal chemistry labellingSouza, João Carlos Silva de 09 March 2017 (has links)
Nos últimos 30 anos, a área de aprendizagem de máquina desenvolveu-se de forma comparável com a Física no início do século XX. Esse avanço tornou possível a resolução de problemas do mundo real que anteriormente não poderiam ser solucionados por máquinas, devido à dificuldade de modelos puramente estatísticos ajustarem-se de forma satisfatória aos dados de treinamento. Dentre tais avanços, pode-se citar a utilização de técnicas de aprendizagem de máquina na área de Química Medicinal, envolvendo métodos de análise, representação e predição de informação molecular por meio de recursos computacionais. Os dados utilizados no contexto biológico possuem algumas características particulares que podem influenciar no resultado de sua análise. Dentre estas, pode-se citar a complexidade das informações moleculares, o desbalanceamento das classes envolvidas e a existência de dados incompletos ou rotulados de forma incerta. Tais adversidades podem prejudicar o processo de identificação de compostos candidatos a novos fármacos, se não forem tratadas de forma adequada. Neste trabalho, foi abordada uma técnica de aprendizagem de máquina semi-supervisionada capaz de reduzir o impacto causado pelo problema da incerteza na rotulação dos dados, aplicando um método para estimar rótulos mais confiáveis para os compostos químicos existentes no conjunto de treinamento. Na tentativa de evitar os efeitos causados pelo desbalanceamento dos dados, foi incorporada ao processo de estimação de rótulos uma abordagem sensível ao custo, com o objetivo de evitar o viés em benefício da classe majoritária. Após o tratamento do problema da incerteza na rotulação, classificadores baseados em Máquinas de Aprendizado Extremo foram construídos, almejando boa capacidade de aproximação em um tempo de processamento reduzido em relação a outras abordagens de classificação comumente aplicadas. Por fim, o desempenho dos classificadores construídos foi avaliado por meio de análises dos resultados obtidos, confrontando o cenário com os dados originais e outros com as novas rotulações obtidas durante o processo de estimação semi-supervisionado / In the last 30 years, the area of machine learning has developed in a way comparable to Physics in the early twentieth century. This breakthrough has made it possible to solve real-world problems that previously could not be solved by machines because of the difficulty of purely statistical models to fit satisfactorily with training data. Among these advances, one can cite the use of machine learning techniques in the area of Medicinal Chemistry, involving methods for analysing, representing and predicting molecular information through computational resources. The data used in the biological context have some particular characteristics that can influence the result of its analysis. These include the complexity of molecular information, the imbalance of the classes involved, and the existence of incomplete or uncertainly labeled data. If they are not properly treated, such adversities may affect the process of identifying candidate compounds for new drugs. In this work, a semi-supervised machine learning technique was considered to reduce the impact caused by the problem of uncertainty in the data labeling, by applying a method to estimate more reliable labels for the chemical compounds in the training set. In an attempt to reduce the effects caused by data imbalance, a cost-sensitive approach was incorporated to the label estimation process, in order to avoid bias in favor of the majority class. After addressing the uncertainty problem in labeling, classifiers based on Extreme Learning Machines were constructed, aiming for good approximation ability in a reduced processing time in relation to other commonly applied classification approaches. Finally, the performance of the classifiers constructed was evaluated by analyzing the results obtained, comparing the scenario with the original data and others with the new labeling obtained by the semi-supervised estimation process
|
99 |
Collective dynamics in complex networks for machine learning / Dinâmica coletiva em redes complexas para aprendizado de máquinaVerri, Filipe Alves Neto 19 March 2018 (has links)
Machine learning enables machines to learn automatically from data. In literature, graph-based methods have received increasing attention due to their ability to learn from both local and global information. In these methods, each data instance is represented by a vertex and is linked to other vertices according to a predefined affinity rule. However, they usually have unfeasible time cost for large problems. To overcome this problem, techniques can employ a heuristic to find suboptimal solutions in a feasible time. Early heuristic optimization methods exploit nature-inspired collective processes, such as ants looking for food sources and swarms of bees. Nowadays, advances in the field of complex systems provide powerful tools to assess and to understand dynamical systems. Complex networks, which are graphs with nontrivial topology, are among these theoretical tools capable of describing the interplay of topology, structure, and dynamics of complex systems. Therefore, machine learning methods based on complex networks and collective dynamics have been proposed. They encompass three steps. First, a complex network is constructed from the input data. Then, the simulation of a distributed collective system in the network generates rich information. Finally, the collected information is used to solve the learning problem. The coordination of the individuals in the system permit to achieve dynamics that is far more complex than the behavior of single individuals. In this research, I have explored collective dynamics in machine learning tasks, both in unsupervised and semi-supervised scenarios. Specifically, I have proposed a new collective system of competing particles that shifts the traditional vertex-centric dynamics to a more informative edge-centric one. Moreover, it is the first particle competition system applied in machine learning task that has deterministic behavior. Results show several advantages of the edge-centric model, including the ability to acquire more information about overlapping areas, a better exploration behavior, and a faster convergence time. Also, I have proposed a new network formation technique that is not based on similarity and has low computational cost. Since addition and removal of samples in the network is cheap, it can be used in real-time application. Finally, I have conducted analytical investigations of a flocking-like system that was needed to guarantee the expected behavior in community detection tasks. In conclusion, the result of the research contributes to many areas of machine learning and complex systems. / Aprendizado de máquina permite que computadores aprendam automaticamente dos dados. Na literatura, métodos baseados em grafos recebem crescente atenção por serem capazes de aprender através de informações locais e globais. Nestes métodos, cada item de dado é um vértice e as conexões são dadas uma regra de afinidade. Todavia, tais técnicas possuem custo de tempo impraticável para grandes grafos. O uso de heurísticas supera este problema, encontrando soluções subótimas em tempo factível. No início, alguns métodos de otimização inspiraram suas heurísticas em processos naturais coletivos, como formigas procurando por comida e enxames de abelhas. Atualmente, os avanços na área de sistemas complexos provêm ferramentas para medir e entender estes sistemas. Redes complexas, as quais são grafos com topologia não trivial, são uma das ferramentas. Elas são capazes de descrever as relações entre topologia, estrutura e dinâmica de sistemas complexos. Deste modo, novos métodos de aprendizado baseados em redes complexas e dinâmica coletiva vêm surgindo. Eles atuam em três passos. Primeiro, uma rede complexa é construída da entrada. Então, simula-se um sistema coletivo distribuído na rede para obter informações. Enfim, a informação coletada é utilizada para resolver o problema. A interação entre indivíduos no sistema permite alcançar uma dinâmica muito mais complexa do que o comportamento individual. Nesta pesquisa, estudei o uso de dinâmica coletiva em problemas de aprendizado de máquina, tanto em casos não supervisionados como semissupervisionados. Especificamente, propus um novo sistema de competição de partículas cuja competição ocorre em arestas ao invés de vértices, aumentando a informação do sistema. Ainda, o sistema proposto é o primeiro modelo de competição de partículas aplicado em aprendizado de máquina com comportamento determinístico. Resultados comprovam várias vantagens do modelo em arestas, includindo detecção de áreas sobrepostas, melhor exploração do espaço e convergência mais rápida. Além disso, apresento uma nova técnica de formação de redes que não é baseada na similaridade dos dados e possui baixa complexidade computational. Uma vez que o custo de inserção e remoção de exemplos na rede é barato, o método pode ser aplicado em aplicações de tempo real. Finalmente, conduzi um estudo analítico em um sistema de alinhamento de partículas. O estudo foi necessário para garantir o comportamento esperado na aplicação do sistema em problemas de detecção de comunidades. Em suma, os resultados da pesquisa contribuíram para várias áreas de aprendizado de máquina e sistemas complexos.
|
100 |
Complex network component unfolding using a particle competition technique / Desdobramento de componentes de redes complexas utilizando uma técnica de competição de partículasUrio, Paulo Roberto 12 June 2017 (has links)
This work applies complex network theory to the problem of semi-supervised and unsupervised learning in networks that are representations of multivariate datasets. Complex networks allow the use of nonlinear dynamical systems to represent behaviors according to the connectivity patterns of networks. Inspired by behavior observed in nature, such as competition for limited resources, dynamical system models can be employed to uncover the organizational structure of a network. In this dissertation, we develop a technique for classifying data represented as interaction networks. As part of the technique, we model a dynamical system inspired by the biological dynamics of resource competition. So far, similar methods have focused on vertices as the resource of competition. We introduce edges as the resource of competition. In doing so, the connectivity pattern of a network might be used not only in the dynamical system simulation but in the learning task as well. / Este trabalho aplica a teoria de redes complexas para o estudo de uma técnica aplicada ao problema de aprendizado semissupervisionado e não-supervisionado em redes, especificamente, aquelas que representam conjuntos de dados multivariados. Redes complexas permitem o emprego de sistemas dinâmicos não-lineares que podem apresentar comportamentos de acordo com os padrões de conectividade de redes. Inspirado pelos comportamentos observados na natureza, tais como a competição por recursos limitados, sistema dinâmicos podem ser utilizados para revelar a estrutura da organização de uma rede. Nesta dissertação, desenvolve-se uma técnica aplicada ao problema de classificação de dados representados por redes de interação. Como parte da técnica, um sistema dinâmico inspirado na competição por recursos foi modelado. Métodos similares concentraram-se em vértices como o recurso da concorrência. Neste trabalho, introduziu-se arestas como o recurso-alvo da competição. Ao fazê-lo, utilizar-se-á o padrão de conectividade de uma rede tanto na simulação do sistema dinâmico, quanto na tarefa de aprendizado.
|
Page generated in 0.0528 seconds