Spelling suggestions: "subject:"[een] SEMI-SUPERVISED LEARNING"" "subject:"[enn] SEMI-SUPERVISED LEARNING""
51 |
Novel Semi-Supervised Learning Models to Balance Data Inclusivity and Usability in Healthcare ApplicationsJanuary 2019 (has links)
abstract: Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited labeled data, as well as the information in the abundant unlabeled data to build strong predictive models. However, not all the included information is useful. For example, some features may correspond to noise and including them will hurt the predictive model performance. Additionally, some instances may not be as relevant to model building and their inclusion will increase training time and potentially hurt the model performance. The objective of this research is to develop novel SSL models to balance data inclusivity and usability. My dissertation research focuses on applications of SSL in healthcare, driven by problems in brain cancer radiomics, migraine imaging, and Parkinson’s Disease telemonitoring.
The first topic introduces an integration of machine learning (ML) and a mechanistic model (PI) to develop an SSL model applied to predicting cell density of glioblastoma brain cancer using multi-parametric medical images. The proposed ML-PI hybrid model integrates imaging information from unbiopsied regions of the brain as well as underlying biological knowledge from the mechanistic model to predict spatial tumor density in the brain.
The second topic develops a multi-modality imaging-based diagnostic decision support system (MMI-DDS). MMI-DDS consists of modality-wise principal components analysis to incorporate imaging features at different aggregation levels (e.g., voxel-wise, connectivity-based, etc.), a constrained particle swarm optimization (cPSO) feature selection algorithm, and a clinical utility engine that utilizes inverse operators on chosen principal components for white-box classification models.
The final topic develops a new SSL regression model with integrated feature and instance selection called s2SSL (with “s2” referring to selection in two different ways: feature and instance). s2SSL integrates cPSO feature selection and graph-based instance selection to simultaneously choose the optimal features and instances and build accurate models for continuous prediction. s2SSL was applied to smartphone-based telemonitoring of Parkinson’s Disease patients. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2019
|
52 |
Semi Supervised Learning for Accurate Segmentation of Roughly Labeled DataRajan, Rachel 01 September 2020 (has links)
No description available.
|
53 |
Semi-Supervised Learning with Sparse Autoencoders in Automatic Speech Recognition / Semi-övervakad inlärning med glesa autoencoders i automatisk taligenkänningDHAKA, AKASH KUMAR January 2016 (has links)
This work is aimed at exploring semi-supervised learning techniques to improve the performance of Automatic Speech Recognition systems. Semi-supervised learning takes advantage of unlabeled data in order to improve the quality of the representations extracted from the data.The proposed model is a neural network where the weights are updated by minimizing the weighted sum of a supervised and an unsupervised cost function, simultaneously. These costs are evaluated on the labeled and unlabeled portions of the data set, respectively. The combined cost is optimized through mini-batch stochastic gradient descent via standard backpropagation.The model was tested on a phone classification task on the TIMIT American English data set and on a written digit classification task on the MNIST data set. Our results show that the model outperforms a network trained with standard backpropagation on the labelled material alone. The results are also in line with state-of-the-art graph-based semi-supervised training methods. / Detta arbete syftar till att utforska halvövervakade inlärningstekniker (semi-supervised learning techniques) för att förbättra prestandan hos automatiska taligenkänningssystem.Halvövervakad maskininlärning använder sig av data ej märkt med klasstillhörighetsinformation för att förbättra kvaliteten hos den från datan extraherade representationen.Modellen som beskrivs i arbetet är ett neuralt nätverk där vikterna uppdateras genom att samtidigt minimera den viktade summan av en övervakad och en oövervakad kostnadsfunktion.Dessa kostnadsfunktioner evalueras på den märkta respektive den omärkta datamängden.De kombinerade kostnadsfunktionerna optimeras genom gradient descent med hjälp av traditionell backpropagation.Modellen har evaluerats genom en fonklassificeringsuppgift på datamängden TIMIT American English, samt en sifferklassificeringsuppgift på datamängden MNIST.Resultaten visar att modellen presterar bättre än ett nätverk tränat med backpropagation på endast märkt data.Resultaten är även konkurrenskraftiga med rådande state of the art, grafbaserade halvövervakade inlärningsmetoder.
|
54 |
Knowledge transfer and retention in deep neural networksFini, Enrico 17 April 2023 (has links)
This thesis addresses the crucial problem of knowledge transfer and retention in deep neural networks. The ability to transfer knowledge from previously learned tasks and retain it for future use is essential for machine learning models to continually adapt to new tasks and improve their overall performance. In principle, knowledge can be transferred between any type of task, but we believe it to be particularly challenging in the field of computer vision, where the size and diversity of visual data often result in high compute requirements and the need for large, complex models. Hence, we analyze transfer and retention learning between unsupervised and supervised visual tasks, which form the main focus of this thesis. We categorize our efforts into several knowledge transfer and retention paradigms, and we tackle them with several contributions for the scientific community. The thesis proposes settings and methods based on knowledge distillation and self-supervised learning techniques. In particular, we devise two novel continual learning settings and seven new methods for knowledge transfer and retention, setting new state-of-the-art in a wide range of tasks. In conclusion, this thesis provides a valuable contribution to the field of computer vision and machine learning and sets a foundation for future work in this area.
|
55 |
Deep-learning Approaches to Object Recognition from 3D DataChen, Zhiang 30 August 2017 (has links)
No description available.
|
56 |
Semi-supervised Sentiment Analysis for Sentence ClassificationTsakiri, Eirini January 2022 (has links)
In our work, we deploy semi-supervised learning methods to perform Sentiment Analysis on a corpus of sentences, meant to be labeled as either happy, neutral, sad, or angry. Sentence-BERT is used to obtain high-dimensional embeddings for the sentences in the training and testing sets, on which three classification methods are applied: the K-Nearest Neighbors classifier (KNN), Label Propagation, and Label Spreading. The latter two are graph-based classifying methods that are expected to provide better predictions compared to the supervised KNN, due to their ability to propagate labels of known data to similar (and spatially close) unknown data. In our study, we experiment with multiple combinations of labeled and unlabeled data, various hyperparameters, and 4 distinct classes of data, and we perform both binary and fine-grained classification tasks. A custom Radial Basis Function kernel is created for this study, in which Euclidean distance is replaced with Cosine Similarity, in order to correspond to the metric used in SentenceBERT. It is found that, for 2 out of 4 tasks, and more specifically 3-class and 2-class classification, the two graph-based algorithms outperform the chosen baseline, although the scores are not significantly higher. The supervised KNN classifier performs better for the second 3-class classification, as well as the 4-class classification, especially when using embeddings of lower dimensionality. The conclusions drawn from the results are, firstly, that the dataset used is most likely not quite suitable for graph creation, and, secondly, that larger volumes of labeled data should be used for further interpretation.
|
57 |
Harnessing the Power of Self-Training for Gaze Point Estimation in Dual Camera Transportation DatasetsBhagat, Hirva Alpesh 14 June 2023 (has links)
This thesis proposes a novel approach for efficiently estimating gaze points in dual camera transportation datasets. Traditional methods for gaze point estimation are dependent on large amounts of labeled data, which can be both expensive and time-consuming to collect. Additionally, alignment and calibration of the two camera views present significant challenges. To overcome these limitations, this thesis investigates the use of self-learning techniques such as semi-supervised learning and self-training, which can reduce the need for labeled data while maintaining high accuracy. The proposed method is evaluated on the DGAZE dataset and achieves a 57.2\% improvement in performance compared to the previous methods. This approach can prove to be a valuable tool for studying visual attention in transportation research, leading to more cost-effective and efficient research in this field. / Master of Science / This thesis presents a new method for efficiently estimating the gaze point of drivers while driving, which is crucial for understanding driver behavior and improving transportation safety. Traditional methods require a lot of labeled data, which can be time-consuming and expensive to obtain. This thesis proposes a self-learning approach that can learn from both labeled and unlabeled data, reducing the need for labeled data while maintaining high accuracy. By training the model on labeled data and using its own estimations on unlabeled data to improve its performance, the proposed approach can adapt to new scenarios and improve its accuracy over time. The proposed method is evaluated on the DGAZE dataset and achieves a 57.2\% improvement in performance compared to the previous methods. Overall, this approach offers a more efficient and cost-effective solution that can potentially help improve transportation safety by providing a better understanding of driver behavior. This approach can prove to be a valuable tool for studying visual attention in transportation research, leading to more cost-effective and efficient research in this field.
|
58 |
Learning with Constraint-Based Weak SupervisionArachie, Chidubem Gibson 28 April 2022 (has links)
Recent adaptations of machine learning models in many businesses has underscored the need for quality training data. Typically, training supervised machine learning systems involves using large amounts of human-annotated data. Labeling data is expensive and can be a limiting factor in using machine learning models. To enable continued integration of machine learning systems in businesses and also easy access by users, researchers have proposed several alternatives to supervised learning. Weak supervision is one such alternative. Weak supervision or weakly supervised learning involves using noisy labels (weak signals of the data) from multiple sources to train machine learning systems. A weak supervision model aggregates multiple noisy label sources called weak signals in order to produce probabilistic labels for the data. The main allure of weak supervision is that it provides a cheap yet effective substitute for supervised learning without need for labeled data. The key challenge in training weakly supervised machine learning models is that the weak supervision leaves ambiguity about the possible true labelings of the data.
In this dissertation, we aim to address the challenge associated with training weakly supervised learning models by developing new weak supervision methods. Our work focuses on learning with constraint-based weak supervision algorithms. Firstly, we will propose an adversarial labeling approach for weak supervision. In this method, the adversary chooses the labels for the data and a model learns by minimising the error made by the adversarial model. Secondly, we will propose a simple constrained based approach that minimises a quadratic objective function in order to solve for the labels of the data. Next we explain the notion of data consistency for weak supervision and propose a data consistent method for weakly supervised learning. This approach combines weak supervision labels with features of the training data to make the learned labels consistent with the data. Lastly, we use this data consistent approach to propose a general approach for improving the performance of weak supervision models. In this method, we combine weak supervision with active learning in order to generate a model that outperforms each individual approach using only a handful of labeled data.
For each algorithm we propose, we report extensive empirical validation of it by testing it on standard text and image classification datasets. We compare each approach against baseline and state-of-the-art methods and show that in most cases we match or outperform the methods we compare against. We report significant gains of our method on both binary and multi-class classification tasks. / Doctor of Philosophy / Machine learning models learn to make predictions from data. In supervised learning, a machine learning model is fed data and corresponding labels for the data so that the model can learn to predict labels for new unseen test data. Curation of large fully supervised datasets is expensive and time consuming since it involves subject matter experts providing labels for each individual data example. The cost of collecting labels has become one of the major roadblocks for training machine learning models. An alternative to supervised training of machine learning models is weak supervision. Weak supervision or weakly supervised learning trains with cheap, and easy to define signals that noisily label the data. We refer to these signals as weak signals. A weak supervision model combines various weak signals to produce training labels for the data. The key challenge in weak supervision is how to combine the different weak signals while navigating misleading correlations in their errors.
In this dissertation, we propose several algorithms for weakly supervised learning. We classify our methods as constraint-based weak supervision since weak supervision is provided as constraints to our algorithms. We use experiments on different text and image classification datasets to show that our methods are effective and outperform competing methods that we compare against. Lastly, we propose a general framework for improving the performance of weak supervision models by incorporating a few labeled data. With this method we are able to close the gap to supervised learning without the need for labeling all the data examples.
|
59 |
<b>MOUSE SOCIAL BEHAVIOR CLASSIFICATION USING SELF-SUPERVISED LEARNING TECHNIQUES</b>Sruthi Sundharram (18437772) 27 April 2024 (has links)
<p dir="ltr">Traditional methods of behavior classification on videos of mice often rely on manually annotated datasets, which can be labor-intensive and resource-demanding to create. This research aims to address the challenges of behavior classification in mouse studies by leveraging an algorithmic framework employing self-supervised learning techniques capable of analyzing unlabeled datasets. This research seeks to develop a novel approach that eliminates the need for extensive manual annotation, making behavioral analysis more accessible and cost-effective for researchers, especially those in laboratories with limited access to annotated datasets.</p>
|
60 |
Semi-Supervised Domain Adaptation for Semantic Segmentation with Consistency Regularization : A learning framework under scarce dense labels / Semi-Superviced Domain Adaption för semantisk segmentering med konsistensregularisering : Ett nytt tillvägagångsätt för lärande under brist på täta etiketterMorales Brotons, Daniel January 2023 (has links)
Learning from unlabeled data is a topic of critical significance in machine learning, as the large datasets required to train ever-growing models are costly and impractical to annotate. Semi-Supervised Learning (SSL) methods aim to learn from a few labels and a large unlabeled dataset. In another approach, Domain Adaptation (DA) leverages data from a similar source domain to train a model for a target domain. This thesis focuses on Semi-Supervised Domain Adaptation (SSDA) for the dense task of semantic segmentation, where labels are particularly costly to obtain. SSDA has not received much attention yet, even though it has a great potential and represents a realistic scenario. The few existing SSDA methods for semantic segmentation reuse ideas from Unsupervised DA, despite the di↵erences between the two settings. This thesis proposes a new semantic segmentation framework designed particularly for the SSDA setting. The approach followed was to forego domain alignment and focus instead on enhancing clusterability of target domain features, an idea from SSL. The method is based on consistency regularization, combined with pixel contrastive learning and self-training. The proposed framework is found to be e↵ective not only in SSDA, but also in SSL. Ultimately, a unified solution for SSL and SSDA semantic segmentation is presented. Experiments were conducted on the target dataset of Cityscapes and source dataset of GTA5. The method proposed is competitive in both SSL and SSDA, and sets a new state-of-the-art for SSDA achieving a 65.6% mIoU (+4.4) on Cityscapes with 100 labeled samples. This thesis has an immediate impact on practical applications by proposing a new best-performing framework for the under-explored setting of SSDA. Furthermore, it also contributes towards the more ambitious goal of designing a unified solution for learning from unlabeled data. / Inlärning med hjälp av omärkt data är ett område av stor vikt inom maskininlärning. Detta på grund av att de stora datamängder som blivit nödvändiga för att träna konstant växande modeller både är kostsamma och opraktiska att implementera. Målet med Semi-Supervised Learning (SSL) är att kombinera ett fåtal etiketter med en stor mängd omärkt data för inlärning. Som ett annat tillvägagångssätt använder Domain Adaptation (DA) data från en liknande domän för att träna en annan måldomän. I Denna avhandling används Semi-Supervised Domain Adaptation (SSDA) för att utföra sådan semantisk segmentering, i vilken etiketter är särskilt kostsamma att erhålla. SSDA är ännu inte genererat mycket uppmärksamhet, även om det har en stor potential och representerar ett realistiskt scenario. De få metoder av SSDA som existerar för semantisk segmentering återanvänder idéer från Unsupervised DA, trots de olikheter som finns mellan de två modellerna. Denna avhandling föreslår ett nytt ramverk för semantisk segmentering, designat speciellt för SSDA modellen. Detta genom att försaka domänanpassning och i stället fokusera på att förbättra klusterbarheten av måldomänens egenskaper, en idé tagen från SSL. Metoden är baserad på konsistensregularisering, i kombination med pixelkontrastinlärning och självinlärning. Det föreslagna ramverket visar sig vara effektivt, inte bara för SSDA, men även för SSL. Till slut presenteras en enad lösning för semantisk segmentering med SLL och SSDA. Experiment utfördes på måldata från Cityscapes samt källdata från GTA5. Den föreslagna metoden är konkurrenskraftig både för SSL och SSDA, och blir världsledande för SSDA genom att uppnå 65,6% mIoU (+4,4) för Cityscapes med 100 märkta testdata. Denna avhandling har en omedelbar effekt gällande praktiska applikationer genom att föreslå ett nytt ”bäst resulterande” ramverk för dåligt utforskade inställningar av SSDA. Till yttermera visso bidrar avhandlingen även till det mer ambitiösa målet att designa en enad lösning för maskininlärning från omärkta data.
|
Page generated in 0.1451 seconds